1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

"""Base class for sparse matrices""" 

from __future__ import division, print_function, absolute_import 

 

import numpy as np 

 

from scipy._lib.six import xrange 

from scipy._lib._numpy_compat import broadcast_to 

from .sputils import (isdense, isscalarlike, isintlike, 

get_sum_dtype, validateaxis, check_reshape_kwargs, 

check_shape, asmatrix) 

 

__all__ = ['spmatrix', 'isspmatrix', 'issparse', 

'SparseWarning', 'SparseEfficiencyWarning'] 

 

 

class SparseWarning(Warning): 

pass 

 

 

class SparseFormatWarning(SparseWarning): 

pass 

 

 

class SparseEfficiencyWarning(SparseWarning): 

pass 

 

 

# The formats that we might potentially understand. 

_formats = {'csc': [0, "Compressed Sparse Column"], 

'csr': [1, "Compressed Sparse Row"], 

'dok': [2, "Dictionary Of Keys"], 

'lil': [3, "LInked List"], 

'dod': [4, "Dictionary of Dictionaries"], 

'sss': [5, "Symmetric Sparse Skyline"], 

'coo': [6, "COOrdinate"], 

'lba': [7, "Linpack BAnded"], 

'egd': [8, "Ellpack-itpack Generalized Diagonal"], 

'dia': [9, "DIAgonal"], 

'bsr': [10, "Block Sparse Row"], 

'msr': [11, "Modified compressed Sparse Row"], 

'bsc': [12, "Block Sparse Column"], 

'msc': [13, "Modified compressed Sparse Column"], 

'ssk': [14, "Symmetric SKyline"], 

'nsk': [15, "Nonsymmetric SKyline"], 

'jad': [16, "JAgged Diagonal"], 

'uss': [17, "Unsymmetric Sparse Skyline"], 

'vbr': [18, "Variable Block Row"], 

'und': [19, "Undefined"] 

} 

 

 

# These univariate ufuncs preserve zeros. 

_ufuncs_with_fixed_point_at_zero = frozenset([ 

np.sin, np.tan, np.arcsin, np.arctan, np.sinh, np.tanh, np.arcsinh, 

np.arctanh, np.rint, np.sign, np.expm1, np.log1p, np.deg2rad, 

np.rad2deg, np.floor, np.ceil, np.trunc, np.sqrt]) 

 

 

MAXPRINT = 50 

 

 

class spmatrix(object): 

""" This class provides a base class for all sparse matrices. It 

cannot be instantiated. Most of the work is provided by subclasses. 

""" 

 

__array_priority__ = 10.1 

ndim = 2 

 

def __init__(self, maxprint=MAXPRINT): 

self._shape = None 

if self.__class__.__name__ == 'spmatrix': 

raise ValueError("This class is not intended" 

" to be instantiated directly.") 

self.maxprint = maxprint 

 

def set_shape(self, shape): 

"""See `reshape`.""" 

# Make sure copy is False since this is in place 

# Make sure format is unchanged because we are doing a __dict__ swap 

new_matrix = self.reshape(shape, copy=False).asformat(self.format) 

self.__dict__ = new_matrix.__dict__ 

 

def get_shape(self): 

"""Get shape of a matrix.""" 

return self._shape 

 

shape = property(fget=get_shape, fset=set_shape) 

 

def reshape(self, *args, **kwargs): 

"""reshape(self, shape, order='C', copy=False) 

 

Gives a new shape to a sparse matrix without changing its data. 

 

Parameters 

---------- 

shape : length-2 tuple of ints 

The new shape should be compatible with the original shape. 

order : {'C', 'F'}, optional 

Read the elements using this index order. 'C' means to read and 

write the elements using C-like index order; e.g. read entire first 

row, then second row, etc. 'F' means to read and write the elements 

using Fortran-like index order; e.g. read entire first column, then 

second column, etc. 

copy : bool, optional 

Indicates whether or not attributes of self should be copied 

whenever possible. The degree to which attributes are copied varies 

depending on the type of sparse matrix being used. 

 

Returns 

------- 

reshaped_matrix : sparse matrix 

A sparse matrix with the given `shape`, not necessarily of the same 

format as the current object. 

 

See Also 

-------- 

np.matrix.reshape : NumPy's implementation of 'reshape' for matrices 

""" 

# If the shape already matches, don't bother doing an actual reshape 

# Otherwise, the default is to convert to COO and use its reshape 

shape = check_shape(args, self.shape) 

order, copy = check_reshape_kwargs(kwargs) 

if shape == self.shape: 

if copy: 

return self.copy() 

else: 

return self 

 

return self.tocoo(copy=copy).reshape(shape, order=order, copy=False) 

 

def resize(self, shape): 

"""Resize the matrix in-place to dimensions given by ``shape`` 

 

Any elements that lie within the new shape will remain at the same 

indices, while non-zero elements lying outside the new shape are 

removed. 

 

Parameters 

---------- 

shape : (int, int) 

number of rows and columns in the new matrix 

 

Notes 

----- 

The semantics are not identical to `numpy.ndarray.resize` or 

`numpy.resize`. Here, the same data will be maintained at each index 

before and after reshape, if that index is within the new bounds. In 

numpy, resizing maintains contiguity of the array, moving elements 

around in the logical matrix but not within a flattened representation. 

 

We give no guarantees about whether the underlying data attributes 

(arrays, etc.) will be modified in place or replaced with new objects. 

""" 

# As an inplace operation, this requires implementation in each format. 

raise NotImplementedError( 

'{}.resize is not implemented'.format(type(self).__name__)) 

 

def astype(self, dtype, casting='unsafe', copy=True): 

"""Cast the matrix elements to a specified type. 

 

Parameters 

---------- 

dtype : string or numpy dtype 

Typecode or data-type to which to cast the data. 

casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional 

Controls what kind of data casting may occur. 

Defaults to 'unsafe' for backwards compatibility. 

'no' means the data types should not be cast at all. 

'equiv' means only byte-order changes are allowed. 

'safe' means only casts which can preserve values are allowed. 

'same_kind' means only safe casts or casts within a kind, 

like float64 to float32, are allowed. 

'unsafe' means any data conversions may be done. 

copy : bool, optional 

If `copy` is `False`, the result might share some memory with this 

matrix. If `copy` is `True`, it is guaranteed that the result and 

this matrix do not share any memory. 

""" 

 

dtype = np.dtype(dtype) 

if self.dtype != dtype: 

return self.tocsr().astype( 

dtype, casting=casting, copy=copy).asformat(self.format) 

elif copy: 

return self.copy() 

else: 

return self 

 

def asfptype(self): 

"""Upcast matrix to a floating point format (if necessary)""" 

 

fp_types = ['f', 'd', 'F', 'D'] 

 

if self.dtype.char in fp_types: 

return self 

else: 

for fp_type in fp_types: 

if self.dtype <= np.dtype(fp_type): 

return self.astype(fp_type) 

 

raise TypeError('cannot upcast [%s] to a floating ' 

'point format' % self.dtype.name) 

 

def __iter__(self): 

for r in xrange(self.shape[0]): 

yield self[r, :] 

 

def getmaxprint(self): 

"""Maximum number of elements to display when printed.""" 

return self.maxprint 

 

def count_nonzero(self): 

"""Number of non-zero entries, equivalent to 

 

np.count_nonzero(a.toarray()) 

 

Unlike getnnz() and the nnz property, which return the number of stored 

entries (the length of the data attribute), this method counts the 

actual number of non-zero entries in data. 

""" 

raise NotImplementedError("count_nonzero not implemented for %s." % 

self.__class__.__name__) 

 

def getnnz(self, axis=None): 

"""Number of stored values, including explicit zeros. 

 

Parameters 

---------- 

axis : None, 0, or 1 

Select between the number of values across the whole matrix, in 

each column, or in each row. 

 

See also 

-------- 

count_nonzero : Number of non-zero entries 

""" 

raise NotImplementedError("getnnz not implemented for %s." % 

self.__class__.__name__) 

 

@property 

def nnz(self): 

"""Number of stored values, including explicit zeros. 

 

See also 

-------- 

count_nonzero : Number of non-zero entries 

""" 

return self.getnnz() 

 

def getformat(self): 

"""Format of a matrix representation as a string.""" 

return getattr(self, 'format', 'und') 

 

def __repr__(self): 

_, format_name = _formats[self.getformat()] 

return "<%dx%d sparse matrix of type '%s'\n" \ 

"\twith %d stored elements in %s format>" % \ 

(self.shape + (self.dtype.type, self.nnz, format_name)) 

 

def __str__(self): 

maxprint = self.getmaxprint() 

 

A = self.tocoo() 

 

# helper function, outputs "(i,j) v" 

def tostr(row, col, data): 

triples = zip(list(zip(row, col)), data) 

return '\n'.join([(' %s\t%s' % t) for t in triples]) 

 

if self.nnz > maxprint: 

half = maxprint // 2 

out = tostr(A.row[:half], A.col[:half], A.data[:half]) 

out += "\n :\t:\n" 

half = maxprint - maxprint//2 

out += tostr(A.row[-half:], A.col[-half:], A.data[-half:]) 

else: 

out = tostr(A.row, A.col, A.data) 

 

return out 

 

def __bool__(self): # Simple -- other ideas? 

if self.shape == (1, 1): 

return self.nnz != 0 

else: 

raise ValueError("The truth value of an array with more than one " 

"element is ambiguous. Use a.any() or a.all().") 

__nonzero__ = __bool__ 

 

# What should len(sparse) return? For consistency with dense matrices, 

# perhaps it should be the number of rows? But for some uses the number of 

# non-zeros is more important. For now, raise an exception! 

def __len__(self): 

raise TypeError("sparse matrix length is ambiguous; use getnnz()" 

" or shape[0]") 

 

def asformat(self, format, copy=False): 

"""Return this matrix in the passed sparse format. 

 

Parameters 

---------- 

format : {str, None} 

The desired sparse matrix format ("csr", "csc", "lil", "dok", ...) 

or None for no conversion. 

copy : bool, optional 

If True, the result is guaranteed to not share data with self. 

 

Returns 

------- 

A : This matrix in the passed sparse format. 

 

""" 

if format is None or format == self.format: 

if copy: 

return self.copy() 

else: 

return self 

else: 

try: 

convert_method = getattr(self, 'to' + format) 

except AttributeError: 

raise ValueError('Format {} is unknown.'.format(format)) 

else: 

return convert_method(copy=copy) 

 

################################################################### 

# NOTE: All arithmetic operations use csr_matrix by default. 

# Therefore a new sparse matrix format just needs to define a 

# .tocsr() method to provide arithmetic support. Any of these 

# methods can be overridden for efficiency. 

#################################################################### 

 

def multiply(self, other): 

"""Point-wise multiplication by another matrix 

""" 

return self.tocsr().multiply(other) 

 

def maximum(self, other): 

"""Element-wise maximum between this and another matrix.""" 

return self.tocsr().maximum(other) 

 

def minimum(self, other): 

"""Element-wise minimum between this and another matrix.""" 

return self.tocsr().minimum(other) 

 

def dot(self, other): 

"""Ordinary dot product 

 

Examples 

-------- 

>>> import numpy as np 

>>> from scipy.sparse import csr_matrix 

>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]]) 

>>> v = np.array([1, 0, -1]) 

>>> A.dot(v) 

array([ 1, -3, -1], dtype=int64) 

 

""" 

return self * other 

 

def power(self, n, dtype=None): 

"""Element-wise power.""" 

return self.tocsr().power(n, dtype=dtype) 

 

def __eq__(self, other): 

return self.tocsr().__eq__(other) 

 

def __ne__(self, other): 

return self.tocsr().__ne__(other) 

 

def __lt__(self, other): 

return self.tocsr().__lt__(other) 

 

def __gt__(self, other): 

return self.tocsr().__gt__(other) 

 

def __le__(self, other): 

return self.tocsr().__le__(other) 

 

def __ge__(self, other): 

return self.tocsr().__ge__(other) 

 

def __abs__(self): 

return abs(self.tocsr()) 

 

def _add_sparse(self, other): 

return self.tocsr()._add_sparse(other) 

 

def _add_dense(self, other): 

return self.tocoo()._add_dense(other) 

 

def _sub_sparse(self, other): 

return self.tocsr()._sub_sparse(other) 

 

def _sub_dense(self, other): 

return self.todense() - other 

 

def _rsub_dense(self, other): 

# note: this can't be replaced by other + (-self) for unsigned types 

return other - self.todense() 

 

def __add__(self, other): # self + other 

if isscalarlike(other): 

if other == 0: 

return self.copy() 

# Now we would add this scalar to every element. 

raise NotImplementedError('adding a nonzero scalar to a ' 

'sparse matrix is not supported') 

elif isspmatrix(other): 

if other.shape != self.shape: 

raise ValueError("inconsistent shapes") 

return self._add_sparse(other) 

elif isdense(other): 

other = broadcast_to(other, self.shape) 

return self._add_dense(other) 

else: 

return NotImplemented 

 

def __radd__(self,other): # other + self 

return self.__add__(other) 

 

def __sub__(self, other): # self - other 

if isscalarlike(other): 

if other == 0: 

return self.copy() 

raise NotImplementedError('subtracting a nonzero scalar from a ' 

'sparse matrix is not supported') 

elif isspmatrix(other): 

if other.shape != self.shape: 

raise ValueError("inconsistent shapes") 

return self._sub_sparse(other) 

elif isdense(other): 

other = broadcast_to(other, self.shape) 

return self._sub_dense(other) 

else: 

return NotImplemented 

 

def __rsub__(self,other): # other - self 

if isscalarlike(other): 

if other == 0: 

return -self.copy() 

raise NotImplementedError('subtracting a sparse matrix from a ' 

'nonzero scalar is not supported') 

elif isdense(other): 

other = broadcast_to(other, self.shape) 

return self._rsub_dense(other) 

else: 

return NotImplemented 

 

def __mul__(self, other): 

"""interpret other and call one of the following 

 

self._mul_scalar() 

self._mul_vector() 

self._mul_multivector() 

self._mul_sparse_matrix() 

""" 

 

M, N = self.shape 

 

if other.__class__ is np.ndarray: 

# Fast path for the most common case 

if other.shape == (N,): 

return self._mul_vector(other) 

elif other.shape == (N, 1): 

return self._mul_vector(other.ravel()).reshape(M, 1) 

elif other.ndim == 2 and other.shape[0] == N: 

return self._mul_multivector(other) 

 

if isscalarlike(other): 

# scalar value 

return self._mul_scalar(other) 

 

if issparse(other): 

if self.shape[1] != other.shape[0]: 

raise ValueError('dimension mismatch') 

return self._mul_sparse_matrix(other) 

 

# If it's a list or whatever, treat it like a matrix 

other_a = np.asanyarray(other) 

 

if other_a.ndim == 0 and other_a.dtype == np.object_: 

# Not interpretable as an array; return NotImplemented so that 

# other's __rmul__ can kick in if that's implemented. 

return NotImplemented 

 

try: 

other.shape 

except AttributeError: 

other = other_a 

 

if other.ndim == 1 or other.ndim == 2 and other.shape[1] == 1: 

# dense row or column vector 

if other.shape != (N,) and other.shape != (N, 1): 

raise ValueError('dimension mismatch') 

 

result = self._mul_vector(np.ravel(other)) 

 

if isinstance(other, np.matrix): 

result = asmatrix(result) 

 

if other.ndim == 2 and other.shape[1] == 1: 

# If 'other' was an (nx1) column vector, reshape the result 

result = result.reshape(-1, 1) 

 

return result 

 

elif other.ndim == 2: 

## 

# dense 2D array or matrix ("multivector") 

 

if other.shape[0] != self.shape[1]: 

raise ValueError('dimension mismatch') 

 

result = self._mul_multivector(np.asarray(other)) 

 

if isinstance(other, np.matrix): 

result = asmatrix(result) 

 

return result 

 

else: 

raise ValueError('could not interpret dimensions') 

 

# by default, use CSR for __mul__ handlers 

def _mul_scalar(self, other): 

return self.tocsr()._mul_scalar(other) 

 

def _mul_vector(self, other): 

return self.tocsr()._mul_vector(other) 

 

def _mul_multivector(self, other): 

return self.tocsr()._mul_multivector(other) 

 

def _mul_sparse_matrix(self, other): 

return self.tocsr()._mul_sparse_matrix(other) 

 

def __rmul__(self, other): # other * self 

if isscalarlike(other): 

return self.__mul__(other) 

else: 

# Don't use asarray unless we have to 

try: 

tr = other.transpose() 

except AttributeError: 

tr = np.asarray(other).transpose() 

return (self.transpose() * tr).transpose() 

 

##################################### 

# matmul (@) operator (Python 3.5+) # 

##################################### 

 

def __matmul__(self, other): 

if isscalarlike(other): 

raise ValueError("Scalar operands are not allowed, " 

"use '*' instead") 

return self.__mul__(other) 

 

def __rmatmul__(self, other): 

if isscalarlike(other): 

raise ValueError("Scalar operands are not allowed, " 

"use '*' instead") 

return self.__rmul__(other) 

 

#################### 

# Other Arithmetic # 

#################### 

 

def _divide(self, other, true_divide=False, rdivide=False): 

if isscalarlike(other): 

if rdivide: 

if true_divide: 

return np.true_divide(other, self.todense()) 

else: 

return np.divide(other, self.todense()) 

 

if true_divide and np.can_cast(self.dtype, np.float_): 

return self.astype(np.float_)._mul_scalar(1./other) 

else: 

r = self._mul_scalar(1./other) 

 

scalar_dtype = np.asarray(other).dtype 

if (np.issubdtype(self.dtype, np.integer) and 

np.issubdtype(scalar_dtype, np.integer)): 

return r.astype(self.dtype) 

else: 

return r 

 

elif isdense(other): 

if not rdivide: 

if true_divide: 

return np.true_divide(self.todense(), other) 

else: 

return np.divide(self.todense(), other) 

else: 

if true_divide: 

return np.true_divide(other, self.todense()) 

else: 

return np.divide(other, self.todense()) 

elif isspmatrix(other): 

if rdivide: 

return other._divide(self, true_divide, rdivide=False) 

 

self_csr = self.tocsr() 

if true_divide and np.can_cast(self.dtype, np.float_): 

return self_csr.astype(np.float_)._divide_sparse(other) 

else: 

return self_csr._divide_sparse(other) 

else: 

return NotImplemented 

 

def __truediv__(self, other): 

return self._divide(other, true_divide=True) 

 

def __div__(self, other): 

# Always do true division 

return self._divide(other, true_divide=True) 

 

def __rtruediv__(self, other): 

# Implementing this as the inverse would be too magical -- bail out 

return NotImplemented 

 

def __rdiv__(self, other): 

# Implementing this as the inverse would be too magical -- bail out 

return NotImplemented 

 

def __neg__(self): 

return -self.tocsr() 

 

def __iadd__(self, other): 

return NotImplemented 

 

def __isub__(self, other): 

return NotImplemented 

 

def __imul__(self, other): 

return NotImplemented 

 

def __idiv__(self, other): 

return self.__itruediv__(other) 

 

def __itruediv__(self, other): 

return NotImplemented 

 

def __pow__(self, other): 

if self.shape[0] != self.shape[1]: 

raise TypeError('matrix is not square') 

 

if isintlike(other): 

other = int(other) 

if other < 0: 

raise ValueError('exponent must be >= 0') 

 

if other == 0: 

from .construct import eye 

return eye(self.shape[0], dtype=self.dtype) 

elif other == 1: 

return self.copy() 

else: 

tmp = self.__pow__(other//2) 

if (other % 2): 

return self * tmp * tmp 

else: 

return tmp * tmp 

elif isscalarlike(other): 

raise ValueError('exponent must be an integer') 

else: 

return NotImplemented 

 

def __getattr__(self, attr): 

if attr == 'A': 

return self.toarray() 

elif attr == 'T': 

return self.transpose() 

elif attr == 'H': 

return self.getH() 

elif attr == 'real': 

return self._real() 

elif attr == 'imag': 

return self._imag() 

elif attr == 'size': 

return self.getnnz() 

else: 

raise AttributeError(attr + " not found") 

 

def transpose(self, axes=None, copy=False): 

""" 

Reverses the dimensions of the sparse matrix. 

 

Parameters 

---------- 

axes : None, optional 

This argument is in the signature *solely* for NumPy 

compatibility reasons. Do not pass in anything except 

for the default value. 

copy : bool, optional 

Indicates whether or not attributes of `self` should be 

copied whenever possible. The degree to which attributes 

are copied varies depending on the type of sparse matrix 

being used. 

 

Returns 

------- 

p : `self` with the dimensions reversed. 

 

See Also 

-------- 

np.matrix.transpose : NumPy's implementation of 'transpose' 

for matrices 

""" 

return self.tocsr(copy=copy).transpose(axes=axes, copy=False) 

 

def conj(self, copy=True): 

"""Element-wise complex conjugation. 

 

If the matrix is of non-complex data type and `copy` is False, 

this method does nothing and the data is not copied. 

 

Parameters 

---------- 

copy : bool, optional 

If True, the result is guaranteed to not share data with self. 

 

Returns 

------- 

A : The element-wise complex conjugate. 

 

""" 

if np.issubdtype(self.dtype, np.complexfloating): 

return self.tocsr(copy=copy).conj(copy=False) 

elif copy: 

return self.copy() 

else: 

return self 

 

def conjugate(self, copy=True): 

return self.conj(copy=copy) 

 

conjugate.__doc__ = conj.__doc__ 

 

# Renamed conjtranspose() -> getH() for compatibility with dense matrices 

def getH(self): 

"""Return the Hermitian transpose of this matrix. 

 

See Also 

-------- 

np.matrix.getH : NumPy's implementation of `getH` for matrices 

""" 

return self.transpose().conj() 

 

def _real(self): 

return self.tocsr()._real() 

 

def _imag(self): 

return self.tocsr()._imag() 

 

def nonzero(self): 

"""nonzero indices 

 

Returns a tuple of arrays (row,col) containing the indices 

of the non-zero elements of the matrix. 

 

Examples 

-------- 

>>> from scipy.sparse import csr_matrix 

>>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]]) 

>>> A.nonzero() 

(array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2])) 

 

""" 

 

# convert to COOrdinate format 

A = self.tocoo() 

nz_mask = A.data != 0 

return (A.row[nz_mask], A.col[nz_mask]) 

 

def getcol(self, j): 

"""Returns a copy of column j of the matrix, as an (m x 1) sparse 

matrix (column vector). 

""" 

# Spmatrix subclasses should override this method for efficiency. 

# Post-multiply by a (n x 1) column vector 'a' containing all zeros 

# except for a_j = 1 

from .csc import csc_matrix 

n = self.shape[1] 

if j < 0: 

j += n 

if j < 0 or j >= n: 

raise IndexError("index out of bounds") 

col_selector = csc_matrix(([1], [[j], [0]]), 

shape=(n, 1), dtype=self.dtype) 

return self * col_selector 

 

def getrow(self, i): 

"""Returns a copy of row i of the matrix, as a (1 x n) sparse 

matrix (row vector). 

""" 

# Spmatrix subclasses should override this method for efficiency. 

# Pre-multiply by a (1 x m) row vector 'a' containing all zeros 

# except for a_i = 1 

from .csr import csr_matrix 

m = self.shape[0] 

if i < 0: 

i += m 

if i < 0 or i >= m: 

raise IndexError("index out of bounds") 

row_selector = csr_matrix(([1], [[0], [i]]), 

shape=(1, m), dtype=self.dtype) 

return row_selector * self 

 

# def __array__(self): 

# return self.toarray() 

 

def todense(self, order=None, out=None): 

""" 

Return a dense matrix representation of this matrix. 

 

Parameters 

---------- 

order : {'C', 'F'}, optional 

Whether to store multi-dimensional data in C (row-major) 

or Fortran (column-major) order in memory. The default 

is 'None', indicating the NumPy default of C-ordered. 

Cannot be specified in conjunction with the `out` 

argument. 

 

out : ndarray, 2-dimensional, optional 

If specified, uses this array (or `numpy.matrix`) as the 

output buffer instead of allocating a new array to 

return. The provided array must have the same shape and 

dtype as the sparse matrix on which you are calling the 

method. 

 

Returns 

------- 

arr : numpy.matrix, 2-dimensional 

A NumPy matrix object with the same shape and containing 

the same data represented by the sparse matrix, with the 

requested memory order. If `out` was passed and was an 

array (rather than a `numpy.matrix`), it will be filled 

with the appropriate values and returned wrapped in a 

`numpy.matrix` object that shares the same memory. 

""" 

return asmatrix(self.toarray(order=order, out=out)) 

 

def toarray(self, order=None, out=None): 

""" 

Return a dense ndarray representation of this matrix. 

 

Parameters 

---------- 

order : {'C', 'F'}, optional 

Whether to store multi-dimensional data in C (row-major) 

or Fortran (column-major) order in memory. The default 

is 'None', indicating the NumPy default of C-ordered. 

Cannot be specified in conjunction with the `out` 

argument. 

 

out : ndarray, 2-dimensional, optional 

If specified, uses this array as the output buffer 

instead of allocating a new array to return. The provided 

array must have the same shape and dtype as the sparse 

matrix on which you are calling the method. For most 

sparse types, `out` is required to be memory contiguous 

(either C or Fortran ordered). 

 

Returns 

------- 

arr : ndarray, 2-dimensional 

An array with the same shape and containing the same 

data represented by the sparse matrix, with the requested 

memory order. If `out` was passed, the same object is 

returned after being modified in-place to contain the 

appropriate values. 

""" 

return self.tocoo(copy=False).toarray(order=order, out=out) 

 

# Any sparse matrix format deriving from spmatrix must define one of 

# tocsr or tocoo. The other conversion methods may be implemented for 

# efficiency, but are not required. 

def tocsr(self, copy=False): 

"""Convert this matrix to Compressed Sparse Row format. 

 

With copy=False, the data/indices may be shared between this matrix and 

the resultant csr_matrix. 

""" 

return self.tocoo(copy=copy).tocsr(copy=False) 

 

def todok(self, copy=False): 

"""Convert this matrix to Dictionary Of Keys format. 

 

With copy=False, the data/indices may be shared between this matrix and 

the resultant dok_matrix. 

""" 

return self.tocoo(copy=copy).todok(copy=False) 

 

def tocoo(self, copy=False): 

"""Convert this matrix to COOrdinate format. 

 

With copy=False, the data/indices may be shared between this matrix and 

the resultant coo_matrix. 

""" 

return self.tocsr(copy=False).tocoo(copy=copy) 

 

def tolil(self, copy=False): 

"""Convert this matrix to LInked List format. 

 

With copy=False, the data/indices may be shared between this matrix and 

the resultant lil_matrix. 

""" 

return self.tocsr(copy=False).tolil(copy=copy) 

 

def todia(self, copy=False): 

"""Convert this matrix to sparse DIAgonal format. 

 

With copy=False, the data/indices may be shared between this matrix and 

the resultant dia_matrix. 

""" 

return self.tocoo(copy=copy).todia(copy=False) 

 

def tobsr(self, blocksize=None, copy=False): 

"""Convert this matrix to Block Sparse Row format. 

 

With copy=False, the data/indices may be shared between this matrix and 

the resultant bsr_matrix. 

 

When blocksize=(R, C) is provided, it will be used for construction of 

the bsr_matrix. 

""" 

return self.tocsr(copy=False).tobsr(blocksize=blocksize, copy=copy) 

 

def tocsc(self, copy=False): 

"""Convert this matrix to Compressed Sparse Column format. 

 

With copy=False, the data/indices may be shared between this matrix and 

the resultant csc_matrix. 

""" 

return self.tocsr(copy=copy).tocsc(copy=False) 

 

def copy(self): 

"""Returns a copy of this matrix. 

 

No data/indices will be shared between the returned value and current 

matrix. 

""" 

return self.__class__(self, copy=True) 

 

def sum(self, axis=None, dtype=None, out=None): 

""" 

Sum the matrix elements over a given axis. 

 

Parameters 

---------- 

axis : {-2, -1, 0, 1, None} optional 

Axis along which the sum is computed. The default is to 

compute the sum of all the matrix elements, returning a scalar 

(i.e. `axis` = `None`). 

dtype : dtype, optional 

The type of the returned matrix and of the accumulator in which 

the elements are summed. The dtype of `a` is used by default 

unless `a` has an integer dtype of less precision than the default 

platform integer. In that case, if `a` is signed then the platform 

integer is used while if `a` is unsigned then an unsigned integer 

of the same precision as the platform integer is used. 

 

.. versionadded:: 0.18.0 

 

out : np.matrix, optional 

Alternative output matrix in which to place the result. It must 

have the same shape as the expected output, but the type of the 

output values will be cast if necessary. 

 

.. versionadded:: 0.18.0 

 

Returns 

------- 

sum_along_axis : np.matrix 

A matrix with the same shape as `self`, with the specified 

axis removed. 

 

See Also 

-------- 

np.matrix.sum : NumPy's implementation of 'sum' for matrices 

 

""" 

validateaxis(axis) 

 

# We use multiplication by a matrix of ones to achieve this. 

# For some sparse matrix formats more efficient methods are 

# possible -- these should override this function. 

m, n = self.shape 

 

# Mimic numpy's casting. 

res_dtype = get_sum_dtype(self.dtype) 

 

if axis is None: 

# sum over rows and columns 

return (self * asmatrix(np.ones( 

(n, 1), dtype=res_dtype))).sum( 

dtype=dtype, out=out) 

 

if axis < 0: 

axis += 2 

 

# axis = 0 or 1 now 

if axis == 0: 

# sum over columns 

ret = asmatrix(np.ones( 

(1, m), dtype=res_dtype)) * self 

else: 

# sum over rows 

ret = self * asmatrix( 

np.ones((n, 1), dtype=res_dtype)) 

 

if out is not None and out.shape != ret.shape: 

raise ValueError("dimensions do not match") 

 

return ret.sum(axis=(), dtype=dtype, out=out) 

 

def mean(self, axis=None, dtype=None, out=None): 

""" 

Compute the arithmetic mean along the specified axis. 

 

Returns the average of the matrix elements. The average is taken 

over all elements in the matrix by default, otherwise over the 

specified axis. `float64` intermediate and return values are used 

for integer inputs. 

 

Parameters 

---------- 

axis : {-2, -1, 0, 1, None} optional 

Axis along which the mean is computed. The default is to compute 

the mean of all elements in the matrix (i.e. `axis` = `None`). 

dtype : data-type, optional 

Type to use in computing the mean. For integer inputs, the default 

is `float64`; for floating point inputs, it is the same as the 

input dtype. 

 

.. versionadded:: 0.18.0 

 

out : np.matrix, optional 

Alternative output matrix in which to place the result. It must 

have the same shape as the expected output, but the type of the 

output values will be cast if necessary. 

 

.. versionadded:: 0.18.0 

 

Returns 

------- 

m : np.matrix 

 

See Also 

-------- 

np.matrix.mean : NumPy's implementation of 'mean' for matrices 

 

""" 

def _is_integral(dtype): 

return (np.issubdtype(dtype, np.integer) or 

np.issubdtype(dtype, np.bool_)) 

 

validateaxis(axis) 

 

res_dtype = self.dtype.type 

integral = _is_integral(self.dtype) 

 

# output dtype 

if dtype is None: 

if integral: 

res_dtype = np.float64 

else: 

res_dtype = np.dtype(dtype).type 

 

# intermediate dtype for summation 

inter_dtype = np.float64 if integral else res_dtype 

inter_self = self.astype(inter_dtype) 

 

if axis is None: 

return (inter_self / np.array( 

self.shape[0] * self.shape[1]))\ 

.sum(dtype=res_dtype, out=out) 

 

if axis < 0: 

axis += 2 

 

# axis = 0 or 1 now 

if axis == 0: 

return (inter_self * (1.0 / self.shape[0])).sum( 

axis=0, dtype=res_dtype, out=out) 

else: 

return (inter_self * (1.0 / self.shape[1])).sum( 

axis=1, dtype=res_dtype, out=out) 

 

def diagonal(self, k=0): 

"""Returns the k-th diagonal of the matrix. 

 

Parameters 

---------- 

k : int, optional 

Which diagonal to set, corresponding to elements a[i, i+k]. 

Default: 0 (the main diagonal). 

 

.. versionadded:: 1.0 

 

See also 

-------- 

numpy.diagonal : Equivalent numpy function. 

 

Examples 

-------- 

>>> from scipy.sparse import csr_matrix 

>>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]]) 

>>> A.diagonal() 

array([1, 0, 5]) 

>>> A.diagonal(k=1) 

array([2, 3]) 

""" 

return self.tocsr().diagonal(k=k) 

 

def setdiag(self, values, k=0): 

""" 

Set diagonal or off-diagonal elements of the array. 

 

Parameters 

---------- 

values : array_like 

New values of the diagonal elements. 

 

Values may have any length. If the diagonal is longer than values, 

then the remaining diagonal entries will not be set. If values if 

longer than the diagonal, then the remaining values are ignored. 

 

If a scalar value is given, all of the diagonal is set to it. 

 

k : int, optional 

Which off-diagonal to set, corresponding to elements a[i,i+k]. 

Default: 0 (the main diagonal). 

 

""" 

M, N = self.shape 

if (k > 0 and k >= N) or (k < 0 and -k >= M): 

raise ValueError("k exceeds matrix dimensions") 

self._setdiag(np.asarray(values), k) 

 

def _setdiag(self, values, k): 

M, N = self.shape 

if k < 0: 

if values.ndim == 0: 

# broadcast 

max_index = min(M+k, N) 

for i in xrange(max_index): 

self[i - k, i] = values 

else: 

max_index = min(M+k, N, len(values)) 

if max_index <= 0: 

return 

for i, v in enumerate(values[:max_index]): 

self[i - k, i] = v 

else: 

if values.ndim == 0: 

# broadcast 

max_index = min(M, N-k) 

for i in xrange(max_index): 

self[i, i + k] = values 

else: 

max_index = min(M, N-k, len(values)) 

if max_index <= 0: 

return 

for i, v in enumerate(values[:max_index]): 

self[i, i + k] = v 

 

def _process_toarray_args(self, order, out): 

if out is not None: 

if order is not None: 

raise ValueError('order cannot be specified if out ' 

'is not None') 

if out.shape != self.shape or out.dtype != self.dtype: 

raise ValueError('out array must be same dtype and shape as ' 

'sparse matrix') 

out[...] = 0. 

return out 

else: 

return np.zeros(self.shape, dtype=self.dtype, order=order) 

 

 

def isspmatrix(x): 

"""Is x of a sparse matrix type? 

 

Parameters 

---------- 

x 

object to check for being a sparse matrix 

 

Returns 

------- 

bool 

True if x is a sparse matrix, False otherwise 

 

Notes 

----- 

issparse and isspmatrix are aliases for the same function. 

 

Examples 

-------- 

>>> from scipy.sparse import csr_matrix, isspmatrix 

>>> isspmatrix(csr_matrix([[5]])) 

True 

 

>>> from scipy.sparse import isspmatrix 

>>> isspmatrix(5) 

False 

""" 

return isinstance(x, spmatrix) 

 

 

issparse = isspmatrix