"""Compressed Block Sparse Row matrix format"""
check_shape) bsr_matmat_pass2, bsr_transpose, bsr_sort_indices)
"""Block Sparse Row matrix
This can be instantiated in several ways: bsr_matrix(D, [blocksize=(R,C)]) where D is a dense matrix or 2-D ndarray.
bsr_matrix(S, [blocksize=(R,C)]) with another sparse matrix S (equivalent to S.tobsr())
bsr_matrix((M, N), [blocksize=(R,C), dtype]) to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'.
bsr_matrix((data, ij), [blocksize=(R,C), shape=(M, N)]) where ``data`` and ``ij`` satisfy ``a[ij[0, k], ij[1, k]] = data[k]``
bsr_matrix((data, indices, indptr), [shape=(M, N)]) is the standard BSR representation where the block column indices for row i are stored in ``indices[indptr[i]:indptr[i+1]]`` and their corresponding block values are stored in ``data[ indptr[i]: indptr[i+1] ]``. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.
Attributes ---------- dtype : dtype Data type of the matrix shape : 2-tuple Shape of the matrix ndim : int Number of dimensions (this is always 2) nnz Number of nonzero elements data Data array of the matrix indices BSR format index array indptr BSR format index pointer array blocksize Block size of the matrix has_sorted_indices Whether indices are sorted
Notes ----- Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
**Summary of BSR format**
The Block Compressed Row (BSR) format is very similar to the Compressed Sparse Row (CSR) format. BSR is appropriate for sparse matrices with dense sub matrices like the last example below. Block matrices often arise in vector-valued finite element discretizations. In such cases, BSR is considerably more efficient than CSR and CSC for many sparse arithmetic operations.
**Blocksize**
The blocksize (R,C) must evenly divide the shape of the matrix (M,N). That is, R and C must satisfy the relationship ``M % R = 0`` and ``N % C = 0``.
If no blocksize is specified, a simple heuristic is applied to determine an appropriate blocksize.
Examples -------- >>> from scipy.sparse import bsr_matrix >>> bsr_matrix((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 0, 1, 2, 2, 2]) >>> col = np.array([0, 2, 2, 0, 1, 2]) >>> data = np.array([1, 2, 3 ,4, 5, 6]) >>> bsr_matrix((data, (row, col)), shape=(3, 3)).toarray() array([[1, 0, 2], [0, 0, 3], [4, 5, 6]])
>>> indptr = np.array([0, 2, 3, 6]) >>> indices = np.array([0, 2, 2, 0, 1, 2]) >>> data = np.array([1, 2, 3, 4, 5, 6]).repeat(4).reshape(6, 2, 2) >>> bsr_matrix((data,indices,indptr), shape=(6, 6)).toarray() array([[1, 1, 0, 0, 2, 2], [1, 1, 0, 0, 2, 2], [0, 0, 0, 0, 3, 3], [0, 0, 0, 0, 3, 3], [4, 4, 5, 5, 6, 6], [4, 4, 5, 5, 6, 6]])
"""
_data_matrix.__init__(self)
if isspmatrix(arg1): if isspmatrix_bsr(arg1) and copy: arg1 = arg1.copy() else: arg1 = arg1.tobsr(blocksize=blocksize) self._set_self(arg1)
elif isinstance(arg1,tuple): if isshape(arg1): # it's a tuple of matrix dimensions (M,N) self._shape = check_shape(arg1) M,N = self.shape # process blocksize if blocksize is None: blocksize = (1,1) else: if not isshape(blocksize): raise ValueError('invalid blocksize=%s' % blocksize) blocksize = tuple(blocksize) self.data = np.zeros((0,) + blocksize, getdtype(dtype, default=float))
R,C = blocksize if (M % R) != 0 or (N % C) != 0: raise ValueError('shape must be multiple of blocksize')
# Select index dtype large enough to pass array and # scalar parameters to sparsetools idx_dtype = get_index_dtype(maxval=max(M//R, N//C, R, C)) self.indices = np.zeros(0, dtype=idx_dtype) self.indptr = np.zeros(M//R + 1, dtype=idx_dtype)
elif len(arg1) == 2: # (data,(row,col)) format from .coo import coo_matrix self._set_self(coo_matrix(arg1, dtype=dtype).tobsr(blocksize=blocksize))
elif len(arg1) == 3: # (data,indices,indptr) format (data, indices, indptr) = arg1
# Select index dtype large enough to pass array and # scalar parameters to sparsetools maxval = 1 if shape is not None: maxval = max(shape) if blocksize is not None: maxval = max(maxval, max(blocksize)) idx_dtype = get_index_dtype((indices, indptr), maxval=maxval, check_contents=True)
self.indices = np.array(indices, copy=copy, dtype=idx_dtype) self.indptr = np.array(indptr, copy=copy, dtype=idx_dtype) self.data = np.array(data, copy=copy, dtype=getdtype(dtype, data)) else: raise ValueError('unrecognized bsr_matrix constructor usage') else: # must be dense try: arg1 = np.asarray(arg1) except: raise ValueError("unrecognized form for" " %s_matrix constructor" % self.format) from .coo import coo_matrix arg1 = coo_matrix(arg1, dtype=dtype).tobsr(blocksize=blocksize) self._set_self(arg1)
if shape is not None: self._shape = check_shape(shape) else: if self.shape is None: # shape not already set, try to infer dimensions try: M = len(self.indptr) - 1 N = self.indices.max() + 1 except: raise ValueError('unable to infer matrix dimensions') else: R,C = self.blocksize self._shape = check_shape((M*R,N*C))
if self.shape is None: if shape is None: # TODO infer shape here raise ValueError('need to infer shape') else: self._shape = check_shape(shape)
if dtype is not None: self.data = self.data.astype(dtype)
self.check_format(full_check=False)
"""check whether the matrix format is valid
*Parameters*: full_check: True - rigorous check, O(N) operations : default False - basic check, O(1) operations
""" M,N = self.shape R,C = self.blocksize
# index arrays should have integer data types if self.indptr.dtype.kind != 'i': warn("indptr array has non-integer dtype (%s)" % self.indptr.dtype.name) if self.indices.dtype.kind != 'i': warn("indices array has non-integer dtype (%s)" % self.indices.dtype.name)
idx_dtype = get_index_dtype((self.indices, self.indptr)) self.indptr = np.asarray(self.indptr, dtype=idx_dtype) self.indices = np.asarray(self.indices, dtype=idx_dtype) self.data = to_native(self.data)
# check array shapes if self.indices.ndim != 1 or self.indptr.ndim != 1: raise ValueError("indices, and indptr should be 1-D") if self.data.ndim != 3: raise ValueError("data should be 3-D")
# check index pointer if (len(self.indptr) != M//R + 1): raise ValueError("index pointer size (%d) should be (%d)" % (len(self.indptr), M//R + 1)) if (self.indptr[0] != 0): raise ValueError("index pointer should start with 0")
# check index and data arrays if (len(self.indices) != len(self.data)): raise ValueError("indices and data should have the same size") if (self.indptr[-1] > len(self.indices)): raise ValueError("Last value of index pointer should be less than " "the size of index and data arrays")
self.prune()
if full_check: # check format validity (more expensive) if self.nnz > 0: if self.indices.max() >= N//C: raise ValueError("column index values must be < %d (now max %d)" % (N//C, self.indices.max())) if self.indices.min() < 0: raise ValueError("column index values must be >= 0") if np.diff(self.indptr).min() < 0: raise ValueError("index pointer values must form a " "non-decreasing sequence")
# if not self.has_sorted_indices(): # warn('Indices were not in sorted order. Sorting indices.') # self.sort_indices(check_first=False)
return self.data.shape[1:]
if axis is not None: raise NotImplementedError("getnnz over an axis is not implemented " "for BSR format") R,C = self.blocksize return int(self.indptr[-1] * R * C)
def __repr__(self): format = _formats[self.getformat()][1] return ("<%dx%d sparse matrix of type '%s'\n" "\twith %d stored elements (blocksize = %dx%d) in %s format>" % (self.shape + (self.dtype.type, self.nnz) + self.blocksize + (format,)))
rows, cols = self.shape if k <= -rows or k >= cols: raise ValueError("k exceeds matrix dimensions") R, C = self.blocksize y = np.zeros(min(rows + min(k, 0), cols - max(k, 0)), dtype=upcast(self.dtype)) _sparsetools.bsr_diagonal(k, rows // R, cols // C, R, C, self.indptr, self.indices, np.ravel(self.data), y) return y
########################## # NotImplemented methods # ##########################
raise NotImplementedError
raise NotImplementedError
###################### # Arithmetic methods # ######################
"Use * operator instead.") def matvec(self, other): """Multiply matrix by vector.""" return self * other
"Use * operator instead.") def matmat(self, other): """Multiply this sparse matrix by other matrix.""" return self * other
return self.tocoo(copy=False)._add_dense(other)
M,N = self.shape R,C = self.blocksize
result = np.zeros(self.shape[0], dtype=upcast(self.dtype, other.dtype))
bsr_matvec(M//R, N//C, R, C, self.indptr, self.indices, self.data.ravel(), other, result)
return result
R,C = self.blocksize M,N = self.shape n_vecs = other.shape[1] # number of column vectors
result = np.zeros((M,n_vecs), dtype=upcast(self.dtype,other.dtype))
bsr_matvecs(M//R, N//C, n_vecs, R, C, self.indptr, self.indices, self.data.ravel(), other.ravel(), result.ravel())
return result
M, K1 = self.shape K2, N = other.shape
R,n = self.blocksize
# convert to this format if isspmatrix_bsr(other): C = other.blocksize[1] else: C = 1
from .csr import isspmatrix_csr
if isspmatrix_csr(other) and n == 1: other = other.tobsr(blocksize=(n,C), copy=False) # lightweight conversion else: other = other.tobsr(blocksize=(n,C))
idx_dtype = get_index_dtype((self.indptr, self.indices, other.indptr, other.indices), maxval=(M//R)*(N//C)) indptr = np.empty(self.indptr.shape, dtype=idx_dtype)
csr_matmat_pass1(M//R, N//C, self.indptr.astype(idx_dtype), self.indices.astype(idx_dtype), other.indptr.astype(idx_dtype), other.indices.astype(idx_dtype), indptr)
bnnz = indptr[-1]
idx_dtype = get_index_dtype((self.indptr, self.indices, other.indptr, other.indices), maxval=bnnz) indptr = indptr.astype(idx_dtype) indices = np.empty(bnnz, dtype=idx_dtype) data = np.empty(R*C*bnnz, dtype=upcast(self.dtype,other.dtype))
bsr_matmat_pass2(M//R, N//C, R, C, n, self.indptr.astype(idx_dtype), self.indices.astype(idx_dtype), np.ravel(self.data), other.indptr.astype(idx_dtype), other.indices.astype(idx_dtype), np.ravel(other.data), indptr, indices, data)
data = data.reshape(-1,R,C)
# TODO eliminate zeros
return bsr_matrix((data,indices,indptr),shape=(M,N),blocksize=(R,C))
###################### # Conversion methods # ######################
"""Convert this matrix into Block Sparse Row Format.
With copy=False, the data/indices may be shared between this matrix and the resultant bsr_matrix.
If blocksize=(R, C) is provided, it will be used for determining block size of the bsr_matrix. """ if blocksize not in [None, self.blocksize]: return self.tocsr().tobsr(blocksize=blocksize) if copy: return self.copy() else: return self
return self.tocoo(copy=False).tocsr(copy=copy) # TODO make this more efficient
return self.tocoo(copy=False).tocsc(copy=copy)
"""Convert this matrix to COOrdinate format.
When copy=False the data array will be shared between this matrix and the resultant coo_matrix. """
M,N = self.shape R,C = self.blocksize
indptr_diff = np.diff(self.indptr) if indptr_diff.dtype.itemsize > np.dtype(np.intp).itemsize: # Check for potential overflow indptr_diff_limited = indptr_diff.astype(np.intp) if np.any(indptr_diff_limited != indptr_diff): raise ValueError("Matrix too big to convert") indptr_diff = indptr_diff_limited
row = (R * np.arange(M//R)).repeat(indptr_diff) row = row.repeat(R*C).reshape(-1,R,C) row += np.tile(np.arange(R).reshape(-1,1), (1,C)) row = row.reshape(-1)
col = (C * self.indices).repeat(R*C).reshape(-1,R,C) col += np.tile(np.arange(C), (R,1)) col = col.reshape(-1)
data = self.data.reshape(-1)
if copy: data = data.copy()
from .coo import coo_matrix return coo_matrix((data,(row,col)), shape=self.shape)
return self.tocoo(copy=False).toarray(order=order, out=out)
if axes is not None: raise ValueError(("Sparse matrices do not support " "an 'axes' parameter because swapping " "dimensions is the only logical permutation."))
R, C = self.blocksize M, N = self.shape NBLK = self.nnz//(R*C)
if self.nnz == 0: return bsr_matrix((N, M), blocksize=(C, R), dtype=self.dtype, copy=copy)
indptr = np.empty(N//C + 1, dtype=self.indptr.dtype) indices = np.empty(NBLK, dtype=self.indices.dtype) data = np.empty((NBLK, C, R), dtype=self.data.dtype)
bsr_transpose(M//R, N//C, R, C, self.indptr, self.indices, self.data.ravel(), indptr, indices, data.ravel())
return bsr_matrix((data, indices, indptr), shape=(N, M), copy=copy)
############################################################## # methods that examine or modify the internal data structure # ##############################################################
"""Remove zero elements in-place.""" R,C = self.blocksize M,N = self.shape
mask = (self.data != 0).reshape(-1,R*C).sum(axis=1) # nonzero blocks
nonzero_blocks = mask.nonzero()[0]
if len(nonzero_blocks) == 0: return # nothing to do
self.data[:len(nonzero_blocks)] = self.data[nonzero_blocks]
# modifies self.indptr and self.indices *in place* _sparsetools.csr_eliminate_zeros(M//R, N//C, self.indptr, self.indices, mask) self.prune()
"""Eliminate duplicate matrix entries by adding them together
The is an *in place* operation """ if self.has_canonical_format: return self.sort_indices() R, C = self.blocksize M, N = self.shape
# port of _sparsetools.csr_sum_duplicates n_row = M // R nnz = 0 row_end = 0 for i in range(n_row): jj = row_end row_end = self.indptr[i+1] while jj < row_end: j = self.indices[jj] x = self.data[jj] jj += 1 while jj < row_end and self.indices[jj] == j: x += self.data[jj] jj += 1 self.indices[nnz] = j self.data[nnz] = x nnz += 1 self.indptr[i+1] = nnz
self.prune() # nnz may have changed self.has_canonical_format = True
"""Sort the indices of this matrix *in place* """ if self.has_sorted_indices: return
R,C = self.blocksize M,N = self.shape
bsr_sort_indices(M//R, N//C, R, C, self.indptr, self.indices, self.data.ravel())
self.has_sorted_indices = True
""" Remove empty space after all non-zero elements. """
R,C = self.blocksize M,N = self.shape
if len(self.indptr) != M//R + 1: raise ValueError("index pointer has invalid length")
bnnz = self.indptr[-1]
if len(self.indices) < bnnz: raise ValueError("indices array has too few elements") if len(self.data) < bnnz: raise ValueError("data array has too few elements")
self.data = self.data[:bnnz] self.indices = self.indices[:bnnz]
# utility functions """Apply the binary operation fn to two sparse matrices."""
# Ideally we'd take the GCDs of the blocksize dimensions # and explode self and other to match. other = self.__class__(other, blocksize=self.blocksize)
# e.g. bsr_plus_bsr, etc. fn = getattr(_sparsetools, self.format + op + self.format)
R,C = self.blocksize
max_bnnz = len(self.data) + len(other.data) idx_dtype = get_index_dtype((self.indptr, self.indices, other.indptr, other.indices), maxval=max_bnnz) indptr = np.empty(self.indptr.shape, dtype=idx_dtype) indices = np.empty(max_bnnz, dtype=idx_dtype)
bool_ops = ['_ne_', '_lt_', '_gt_', '_le_', '_ge_'] if op in bool_ops: data = np.empty(R*C*max_bnnz, dtype=np.bool_) else: data = np.empty(R*C*max_bnnz, dtype=upcast(self.dtype,other.dtype))
fn(self.shape[0]//R, self.shape[1]//C, R, C, self.indptr.astype(idx_dtype), self.indices.astype(idx_dtype), self.data, other.indptr.astype(idx_dtype), other.indices.astype(idx_dtype), np.ravel(other.data), indptr, indices, data)
actual_bnnz = indptr[-1] indices = indices[:actual_bnnz] data = data[:R*C*actual_bnnz]
if actual_bnnz < max_bnnz/2: indices = indices.copy() data = data.copy()
data = data.reshape(-1,R,C)
return self.__class__((data, indices, indptr), shape=self.shape)
# needed by _data_matrix """Returns a matrix with the same sparsity structure as self, but with different data. By default the structure arrays (i.e. .indptr and .indices) are copied. """ if copy: return self.__class__((data,self.indices.copy(),self.indptr.copy()), shape=self.shape,dtype=data.dtype) else: return self.__class__((data,self.indices,self.indptr), shape=self.shape,dtype=data.dtype)
# # these functions are used by the parent class # # to remove redudancy between bsc_matrix and bsr_matrix # def _swap(self,x): # """swap the members of x if this is a column-oriented matrix # """ # return (x[0],x[1])
"""Is x of a bsr_matrix type?
Parameters ---------- x object to check for being a bsr matrix
Returns ------- bool True if x is a bsr matrix, False otherwise
Examples -------- >>> from scipy.sparse import bsr_matrix, isspmatrix_bsr >>> isspmatrix_bsr(bsr_matrix([[5]])) True
>>> from scipy.sparse import bsr_matrix, csr_matrix, isspmatrix_bsr >>> isspmatrix_bsr(csr_matrix([[5]])) False """ return isinstance(x, bsr_matrix) |