"""Base class for sparse matrix formats using compressed storage."""
getdtype, isscalarlike, IndexMixin, get_index_dtype, downcast_intp_index, get_sum_dtype, check_shape, matrix, asmatrix)
"""base matrix class for compressed row and column oriented matrices"""
_data_matrix.__init__(self)
if isspmatrix(arg1): if arg1.format == self.format and copy: arg1 = arg1.copy() else: arg1 = arg1.asformat(self.format) self._set_self(arg1)
elif isinstance(arg1, tuple): if isshape(arg1): # It's a tuple of matrix dimensions (M, N) # create empty matrix self._shape = check_shape(arg1) M, N = self.shape # Select index dtype large enough to pass array and # scalar parameters to sparsetools idx_dtype = get_index_dtype(maxval=max(M,N)) self.data = np.zeros(0, getdtype(dtype, default=float)) self.indices = np.zeros(0, idx_dtype) self.indptr = np.zeros(self._swap((M,N))[0] + 1, dtype=idx_dtype) else: if len(arg1) == 2: # (data, ij) format from .coo import coo_matrix other = self.__class__(coo_matrix(arg1, shape=shape)) self._set_self(other) elif len(arg1) == 3: # (data, indices, indptr) format (data, indices, indptr) = arg1
# Select index dtype large enough to pass array and # scalar parameters to sparsetools maxval = None if shape is not None: maxval = max(shape) idx_dtype = get_index_dtype((indices, indptr), maxval=maxval, check_contents=True)
self.indices = np.array(indices, copy=copy, dtype=idx_dtype) self.indptr = np.array(indptr, copy=copy, dtype=idx_dtype) self.data = np.array(data, copy=copy, dtype=dtype) else: raise ValueError("unrecognized %s_matrix constructor usage" % self.format)
else: # must be dense try: arg1 = np.asarray(arg1) except: raise ValueError("unrecognized %s_matrix constructor usage" % self.format) from .coo import coo_matrix self._set_self(self.__class__(coo_matrix(arg1, dtype=dtype)))
# Read matrix dimensions given, if any if shape is not None: self._shape = check_shape(shape) else: if self.shape is None: # shape not already set, try to infer dimensions try: major_dim = len(self.indptr) - 1 minor_dim = self.indices.max() + 1 except: raise ValueError('unable to infer matrix dimensions') else: self._shape = check_shape(self._swap((major_dim,minor_dim)))
if dtype is not None: self.data = np.asarray(self.data, dtype=dtype)
self.check_format(full_check=False)
if axis is None: return int(self.indptr[-1]) else: if axis < 0: axis += 2 axis, _ = self._swap((axis, 1 - axis)) _, N = self._swap(self.shape) if axis == 0: return np.bincount(downcast_intp_index(self.indices), minlength=N) elif axis == 1: return np.diff(self.indptr) raise ValueError('axis out of bounds')
"""take the member variables of other and assign them to self"""
if copy: other = other.copy()
self.data = other.data self.indices = other.indices self.indptr = other.indptr self._shape = check_shape(other.shape)
"""check whether the matrix format is valid
Parameters ---------- full_check : bool, optional If `True`, rigorous check, O(N) operations. Otherwise basic check, O(1) operations (default True). """ # use _swap to determine proper bounds major_name,minor_name = self._swap(('row','column')) major_dim,minor_dim = self._swap(self.shape)
# index arrays should have integer data types if self.indptr.dtype.kind != 'i': warn("indptr array has non-integer dtype (%s)" % self.indptr.dtype.name) if self.indices.dtype.kind != 'i': warn("indices array has non-integer dtype (%s)" % self.indices.dtype.name)
idx_dtype = get_index_dtype((self.indptr, self.indices)) self.indptr = np.asarray(self.indptr, dtype=idx_dtype) self.indices = np.asarray(self.indices, dtype=idx_dtype) self.data = to_native(self.data)
# check array shapes if self.data.ndim != 1 or self.indices.ndim != 1 or self.indptr.ndim != 1: raise ValueError('data, indices, and indptr should be 1-D')
# check index pointer if (len(self.indptr) != major_dim + 1): raise ValueError("index pointer size (%d) should be (%d)" % (len(self.indptr), major_dim + 1)) if (self.indptr[0] != 0): raise ValueError("index pointer should start with 0")
# check index and data arrays if (len(self.indices) != len(self.data)): raise ValueError("indices and data should have the same size") if (self.indptr[-1] > len(self.indices)): raise ValueError("Last value of index pointer should be less than " "the size of index and data arrays")
self.prune()
if full_check: # check format validity (more expensive) if self.nnz > 0: if self.indices.max() >= minor_dim: raise ValueError("%s index values must be < %d" % (minor_name,minor_dim)) if self.indices.min() < 0: raise ValueError("%s index values must be >= 0" % minor_name) if np.diff(self.indptr).min() < 0: raise ValueError("index pointer values must form a " "non-decreasing sequence")
# if not self.has_sorted_indices(): # warn('Indices were not in sorted order. Sorting indices.') # self.sort_indices() # assert(self.has_sorted_indices()) # TODO check for duplicates?
####################### # Boolean comparisons # #######################
"""Scalar version of self._binopt, for cases in which no new nonzeros are added. Produces a new spmatrix in canonical form. """ self.sum_duplicates() res = self._with_data(op(self.data, other), copy=True) res.eliminate_zeros() return res
# Scalar other. if isscalarlike(other): if np.isnan(other): return self.__class__(self.shape, dtype=np.bool_)
if other == 0: warn("Comparing a sparse matrix with 0 using == is inefficient" ", try using != instead.", SparseEfficiencyWarning) all_true = self.__class__(np.ones(self.shape, dtype=np.bool_)) inv = self._scalar_binopt(other, operator.ne) return all_true - inv else: return self._scalar_binopt(other, operator.eq) # Dense other. elif isdense(other): return self.todense() == other # Sparse other. elif isspmatrix(other): warn("Comparing sparse matrices using == is inefficient, try using" " != instead.", SparseEfficiencyWarning) #TODO sparse broadcasting if self.shape != other.shape: return False elif self.format != other.format: other = other.asformat(self.format) res = self._binopt(other,'_ne_') all_true = self.__class__(np.ones(self.shape, dtype=np.bool_)) return all_true - res else: return False
# Scalar other. if isscalarlike(other): if np.isnan(other): warn("Comparing a sparse matrix with nan using != is inefficient", SparseEfficiencyWarning) all_true = self.__class__(np.ones(self.shape, dtype=np.bool_)) return all_true elif other != 0: warn("Comparing a sparse matrix with a nonzero scalar using !=" " is inefficient, try using == instead.", SparseEfficiencyWarning) all_true = self.__class__(np.ones(self.shape), dtype=np.bool_) inv = self._scalar_binopt(other, operator.eq) return all_true - inv else: return self._scalar_binopt(other, operator.ne) # Dense other. elif isdense(other): return self.todense() != other # Sparse other. elif isspmatrix(other): #TODO sparse broadcasting if self.shape != other.shape: return True elif self.format != other.format: other = other.asformat(self.format) return self._binopt(other,'_ne_') else: return True
# Scalar other. if isscalarlike(other): if 0 == other and op_name in ('_le_', '_ge_'): raise NotImplementedError(" >= and <= don't work with 0.") elif op(0, other): warn(bad_scalar_msg, SparseEfficiencyWarning) other_arr = np.empty(self.shape, dtype=np.result_type(other)) other_arr.fill(other) other_arr = self.__class__(other_arr) return self._binopt(other_arr, op_name) else: return self._scalar_binopt(other, op) # Dense other. elif isdense(other): return op(self.todense(), other) # Sparse other. elif isspmatrix(other): #TODO sparse broadcasting if self.shape != other.shape: raise ValueError("inconsistent shapes") elif self.format != other.format: other = other.asformat(self.format) if op_name not in ('_ge_', '_le_'): return self._binopt(other, op_name)
warn("Comparing sparse matrices using >= and <= is inefficient, " "using <, >, or !=, instead.", SparseEfficiencyWarning) all_true = self.__class__(np.ones(self.shape)) res = self._binopt(other, '_gt_' if op_name == '_le_' else '_lt_') return all_true - res else: raise ValueError("Operands could not be compared.")
return self._inequality(other, operator.lt, '_lt_', "Comparing a sparse matrix with a scalar " "greater than zero using < is inefficient, " "try using >= instead.")
return self._inequality(other, operator.gt, '_gt_', "Comparing a sparse matrix with a scalar " "less than zero using > is inefficient, " "try using <= instead.")
return self._inequality(other, operator.le, '_le_', "Comparing a sparse matrix with a scalar " "greater than zero using <= is inefficient, " "try using > instead.")
return self._inequality(other, operator.ge, '_ge_', "Comparing a sparse matrix with a scalar " "less than zero using >= is inefficient, " "try using < instead.")
################################# # Arithmetic operator overrides # #################################
if other.shape != self.shape: raise ValueError('Incompatible shapes.') dtype = upcast_char(self.dtype.char, other.dtype.char) order = self._swap('CF')[0] result = np.array(other, dtype=dtype, order=order, copy=True) M, N = self._swap(self.shape) y = result if result.flags.c_contiguous else result.T _sparsetools.csr_todense(M, N, self.indptr, self.indices, self.data, y) return matrix(result, copy=False)
return self._binopt(other, '_plus_')
return self._binopt(other, '_minus_')
"""Point-wise multiplication by another matrix, vector, or scalar. """ # Scalar multiplication. if isscalarlike(other): return self._mul_scalar(other) # Sparse matrix or vector. if isspmatrix(other): if self.shape == other.shape: other = self.__class__(other) return self._binopt(other, '_elmul_') # Single element. elif other.shape == (1,1): return self._mul_scalar(other.toarray()[0, 0]) elif self.shape == (1,1): return other._mul_scalar(self.toarray()[0, 0]) # A row times a column. elif self.shape[1] == 1 and other.shape[0] == 1: return self._mul_sparse_matrix(other.tocsc()) elif self.shape[0] == 1 and other.shape[1] == 1: return other._mul_sparse_matrix(self.tocsc()) # Row vector times matrix. other is a row. elif other.shape[0] == 1 and self.shape[1] == other.shape[1]: other = dia_matrix((other.toarray().ravel(), [0]), shape=(other.shape[1], other.shape[1])) return self._mul_sparse_matrix(other) # self is a row. elif self.shape[0] == 1 and self.shape[1] == other.shape[1]: copy = dia_matrix((self.toarray().ravel(), [0]), shape=(self.shape[1], self.shape[1])) return other._mul_sparse_matrix(copy) # Column vector times matrix. other is a column. elif other.shape[1] == 1 and self.shape[0] == other.shape[0]: other = dia_matrix((other.toarray().ravel(), [0]), shape=(other.shape[0], other.shape[0])) return other._mul_sparse_matrix(self) # self is a column. elif self.shape[1] == 1 and self.shape[0] == other.shape[0]: copy = dia_matrix((self.toarray().ravel(), [0]), shape=(self.shape[0], self.shape[0])) return copy._mul_sparse_matrix(other) else: raise ValueError("inconsistent shapes")
# Assume other is a dense matrix/array, which produces a single-item # object array if other isn't convertible to ndarray. other = np.atleast_2d(other)
if other.ndim != 2: return np.multiply(self.toarray(), other) # Single element / wrapped object. if other.size == 1: return self._mul_scalar(other.flat[0]) # Fast case for trivial sparse matrix. elif self.shape == (1, 1): return np.multiply(self.toarray()[0,0], other)
from .coo import coo_matrix ret = self.tocoo() # Matching shapes. if self.shape == other.shape: data = np.multiply(ret.data, other[ret.row, ret.col]) # Sparse row vector times... elif self.shape[0] == 1: if other.shape[1] == 1: # Dense column vector. data = np.multiply(ret.data, other) elif other.shape[1] == self.shape[1]: # Dense matrix. data = np.multiply(ret.data, other[:, ret.col]) else: raise ValueError("inconsistent shapes") row = np.repeat(np.arange(other.shape[0]), len(ret.row)) col = np.tile(ret.col, other.shape[0]) return coo_matrix((data.view(np.ndarray).ravel(), (row, col)), shape=(other.shape[0], self.shape[1]), copy=False) # Sparse column vector times... elif self.shape[1] == 1: if other.shape[0] == 1: # Dense row vector. data = np.multiply(ret.data[:, None], other) elif other.shape[0] == self.shape[0]: # Dense matrix. data = np.multiply(ret.data[:, None], other[ret.row]) else: raise ValueError("inconsistent shapes") row = np.repeat(ret.row, other.shape[1]) col = np.tile(np.arange(other.shape[1]), len(ret.col)) return coo_matrix((data.view(np.ndarray).ravel(), (row, col)), shape=(self.shape[0], other.shape[1]), copy=False) # Sparse matrix times dense row vector. elif other.shape[0] == 1 and self.shape[1] == other.shape[1]: data = np.multiply(ret.data, other[:, ret.col].ravel()) # Sparse matrix times dense column vector. elif other.shape[1] == 1 and self.shape[0] == other.shape[0]: data = np.multiply(ret.data, other[ret.row].ravel()) else: raise ValueError("inconsistent shapes") ret.data = data.view(np.ndarray).ravel() return ret
########################### # Multiplication handlers # ###########################
M,N = self.shape
# output array result = np.zeros(M, dtype=upcast_char(self.dtype.char, other.dtype.char))
# csr_matvec or csc_matvec fn = getattr(_sparsetools,self.format + '_matvec') fn(M, N, self.indptr, self.indices, self.data, other, result)
return result
M,N = self.shape n_vecs = other.shape[1] # number of column vectors
result = np.zeros((M,n_vecs), dtype=upcast_char(self.dtype.char, other.dtype.char))
# csr_matvecs or csc_matvecs fn = getattr(_sparsetools,self.format + '_matvecs') fn(M, N, n_vecs, self.indptr, self.indices, self.data, other.ravel(), result.ravel())
return result
M, K1 = self.shape K2, N = other.shape
major_axis = self._swap((M,N))[0] other = self.__class__(other) # convert to this format
idx_dtype = get_index_dtype((self.indptr, self.indices, other.indptr, other.indices), maxval=M*N) indptr = np.empty(major_axis + 1, dtype=idx_dtype)
fn = getattr(_sparsetools, self.format + '_matmat_pass1') fn(M, N, np.asarray(self.indptr, dtype=idx_dtype), np.asarray(self.indices, dtype=idx_dtype), np.asarray(other.indptr, dtype=idx_dtype), np.asarray(other.indices, dtype=idx_dtype), indptr)
nnz = indptr[-1] idx_dtype = get_index_dtype((self.indptr, self.indices, other.indptr, other.indices), maxval=nnz) indptr = np.asarray(indptr, dtype=idx_dtype) indices = np.empty(nnz, dtype=idx_dtype) data = np.empty(nnz, dtype=upcast(self.dtype, other.dtype))
fn = getattr(_sparsetools, self.format + '_matmat_pass2') fn(M, N, np.asarray(self.indptr, dtype=idx_dtype), np.asarray(self.indices, dtype=idx_dtype), self.data, np.asarray(other.indptr, dtype=idx_dtype), np.asarray(other.indices, dtype=idx_dtype), other.data, indptr, indices, data)
return self.__class__((data,indices,indptr),shape=(M,N))
rows, cols = self.shape if k <= -rows or k >= cols: raise ValueError("k exceeds matrix dimensions") fn = getattr(_sparsetools, self.format + "_diagonal") y = np.empty(min(rows + min(k, 0), cols - max(k, 0)), dtype=upcast(self.dtype)) fn(k, self.shape[0], self.shape[1], self.indptr, self.indices, self.data, y) return y
##################### # Other binary ops # #####################
if isscalarlike(other): if dense_check(other): warn("Taking maximum (minimum) with > 0 (< 0) number results to " "a dense matrix.", SparseEfficiencyWarning) other_arr = np.empty(self.shape, dtype=np.asarray(other).dtype) other_arr.fill(other) other_arr = self.__class__(other_arr) return self._binopt(other_arr, op_name) else: self.sum_duplicates() new_data = npop(self.data, np.asarray(other)) mat = self.__class__((new_data, self.indices, self.indptr), dtype=new_data.dtype, shape=self.shape) return mat elif isdense(other): return npop(self.todense(), other) elif isspmatrix(other): return self._binopt(other, op_name) else: raise ValueError("Operands not compatible.")
return self._maximum_minimum(other, np.maximum, '_maximum_', lambda x: np.asarray(x) > 0)
return self._maximum_minimum(other, np.minimum, '_minimum_', lambda x: np.asarray(x) < 0)
##################### # Reduce operations # #####################
"""Sum the matrix over the given axis. If the axis is None, sum over both rows and columns, returning a scalar. """ # The spmatrix base class already does axis=0 and axis=1 efficiently # so we only do the case axis=None here if (not hasattr(self, 'blocksize') and axis in self._swap(((1, -1), (0, 2)))[0]): # faster than multiplication for large minor axis in CSC/CSR res_dtype = get_sum_dtype(self.dtype) ret = np.zeros(len(self.indptr) - 1, dtype=res_dtype)
major_index, value = self._minor_reduce(np.add) ret[major_index] = value ret = asmatrix(ret) if axis % 2 == 1: ret = ret.T
if out is not None and out.shape != ret.shape: raise ValueError('dimensions do not match')
return ret.sum(axis=(), dtype=dtype, out=out) # spmatrix will handle the remaining situations when axis # is in {None, -1, 0, 1} else: return spmatrix.sum(self, axis=axis, dtype=dtype, out=out)
"""Reduce nonzeros with a ufunc over the minor axis when non-empty
Can be applied to a function of self.data by supplying data parameter.
Warning: this does not call sum_duplicates()
Returns ------- major_index : array of ints Major indices where nonzero
value : array of self.dtype Reduce result for nonzeros in each major_index """ if data is None: data = self.data major_index = np.flatnonzero(np.diff(self.indptr)) value = ufunc.reduceat(data, downcast_intp_index(self.indptr[major_index])) return major_index, value
####################### # Getting and Setting # #######################
# Process arrays from IndexMixin i, j = self._unpack_index(index) i, j = self._index_to_arrays(i, j)
if isspmatrix(x): broadcast_row = x.shape[0] == 1 and i.shape[0] != 1 broadcast_col = x.shape[1] == 1 and i.shape[1] != 1 if not ((broadcast_row or x.shape[0] == i.shape[0]) and (broadcast_col or x.shape[1] == i.shape[1])): raise ValueError("shape mismatch in assignment")
# clear entries that will be overwritten ci, cj = self._swap((i.ravel(), j.ravel())) self._zero_many(ci, cj)
x = x.tocoo(copy=True) x.sum_duplicates() r, c = x.row, x.col x = np.asarray(x.data, dtype=self.dtype) if broadcast_row: r = np.repeat(np.arange(i.shape[0]), len(r)) c = np.tile(c, i.shape[0]) x = np.tile(x, i.shape[0]) if broadcast_col: r = np.repeat(r, i.shape[1]) c = np.tile(np.arange(i.shape[1]), len(c)) x = np.repeat(x, i.shape[1]) # only assign entries in the new sparsity structure i = i[r, c] j = j[r, c] else: # Make x and i into the same shape x = np.asarray(x, dtype=self.dtype) x, _ = np.broadcast_arrays(x, i)
if x.shape != i.shape: raise ValueError("shape mismatch in assignment")
if np.size(x) == 0: return i, j = self._swap((i.ravel(), j.ravel())) self._set_many(i, j, x.ravel())
if 0 in self.shape: return
M, N = self.shape broadcast = (values.ndim == 0)
if k < 0: if broadcast: max_index = min(M + k, N) else: max_index = min(M + k, N, len(values)) i = np.arange(max_index, dtype=self.indices.dtype) j = np.arange(max_index, dtype=self.indices.dtype) i -= k
else: if broadcast: max_index = min(M, N - k) else: max_index = min(M, N - k, len(values)) i = np.arange(max_index, dtype=self.indices.dtype) j = np.arange(max_index, dtype=self.indices.dtype) j += k
if not broadcast: values = values[:len(i)]
self[i, j] = values
M, N = self._swap(self.shape)
def check_bounds(indices, bound): idx = indices.max() if idx >= bound: raise IndexError('index (%d) out of range (>= %d)' % (idx, bound)) idx = indices.min() if idx < -bound: raise IndexError('index (%d) out of range (< -%d)' % (idx, bound))
check_bounds(i, M) check_bounds(j, N)
i = np.asarray(i, dtype=self.indices.dtype) j = np.asarray(j, dtype=self.indices.dtype) return i, j, M, N
"""Sets value at each (i, j) to x
Here (i,j) index major and minor respectively, and must not contain duplicate entries. """ i, j, M, N = self._prepare_indices(i, j)
n_samples = len(x) offsets = np.empty(n_samples, dtype=self.indices.dtype) ret = _sparsetools.csr_sample_offsets(M, N, self.indptr, self.indices, n_samples, i, j, offsets) if ret == 1: # rinse and repeat self.sum_duplicates() _sparsetools.csr_sample_offsets(M, N, self.indptr, self.indices, n_samples, i, j, offsets)
if -1 not in offsets: # only affects existing non-zero cells self.data[offsets] = x return
else: warn("Changing the sparsity structure of a %s_matrix is expensive. " "lil_matrix is more efficient." % self.format, SparseEfficiencyWarning) # replace where possible mask = offsets > -1 self.data[offsets[mask]] = x[mask] # only insertions remain mask = ~mask i = i[mask] i[i < 0] += M j = j[mask] j[j < 0] += N self._insert_many(i, j, x[mask])
"""Sets value at each (i, j) to zero, preserving sparsity structure.
Here (i,j) index major and minor respectively. """ i, j, M, N = self._prepare_indices(i, j)
n_samples = len(i) offsets = np.empty(n_samples, dtype=self.indices.dtype) ret = _sparsetools.csr_sample_offsets(M, N, self.indptr, self.indices, n_samples, i, j, offsets) if ret == 1: # rinse and repeat self.sum_duplicates() _sparsetools.csr_sample_offsets(M, N, self.indptr, self.indices, n_samples, i, j, offsets)
# only assign zeros to the existing sparsity structure self.data[offsets[offsets > -1]] = 0
"""Inserts new nonzero at each (i, j) with value x
Here (i,j) index major and minor respectively. i, j and x must be non-empty, 1d arrays. Inserts each major group (e.g. all entries per row) at a time. Maintains has_sorted_indices property. Modifies i, j, x in place. """ order = np.argsort(i, kind='mergesort') # stable for duplicates i = i.take(order, mode='clip') j = j.take(order, mode='clip') x = x.take(order, mode='clip')
do_sort = self.has_sorted_indices
# Update index data type idx_dtype = get_index_dtype((self.indices, self.indptr), maxval=(self.indptr[-1] + x.size)) self.indptr = np.asarray(self.indptr, dtype=idx_dtype) self.indices = np.asarray(self.indices, dtype=idx_dtype) i = np.asarray(i, dtype=idx_dtype) j = np.asarray(j, dtype=idx_dtype)
# Collate old and new in chunks by major index indices_parts = [] data_parts = [] ui, ui_indptr = np.unique(i, return_index=True) ui_indptr = np.append(ui_indptr, len(j)) new_nnzs = np.diff(ui_indptr) prev = 0 for c, (ii, js, je) in enumerate(izip(ui, ui_indptr, ui_indptr[1:])): # old entries start = self.indptr[prev] stop = self.indptr[ii] indices_parts.append(self.indices[start:stop]) data_parts.append(self.data[start:stop])
# handle duplicate j: keep last setting uj, uj_indptr = np.unique(j[js:je][::-1], return_index=True) if len(uj) == je - js: indices_parts.append(j[js:je]) data_parts.append(x[js:je]) else: indices_parts.append(j[js:je][::-1][uj_indptr]) data_parts.append(x[js:je][::-1][uj_indptr]) new_nnzs[c] = len(uj)
prev = ii
# remaining old entries start = self.indptr[ii] indices_parts.append(self.indices[start:]) data_parts.append(self.data[start:])
# update attributes self.indices = np.concatenate(indices_parts) self.data = np.concatenate(data_parts) nnzs = np.asarray(np.ediff1d(self.indptr, to_begin=0), dtype=idx_dtype) nnzs[1:][ui] += new_nnzs self.indptr = np.cumsum(nnzs, out=nnzs)
if do_sort: # TODO: only sort where necessary self.has_sorted_indices = False self.sort_indices()
self.check_format(full_check=False)
M, N = self.shape if (row < 0): row += M if (col < 0): col += N if not (0 <= row < M) or not (0 <= col < N): raise IndexError("index out of bounds: 0<=%d<%d, 0<=%d<%d" % (row, M, col, N))
major_index, minor_index = self._swap((row, col))
start = self.indptr[major_index] end = self.indptr[major_index + 1]
if self.has_sorted_indices: # Copies may be made, if dtypes of indices are not identical minor_index = self.indices.dtype.type(minor_index) minor_indices = self.indices[start:end] insert_pos_left = np.searchsorted( minor_indices, minor_index, side='left') insert_pos_right = insert_pos_left + np.searchsorted( minor_indices[insert_pos_left:], minor_index, side='right') return self.data[start + insert_pos_left: start + insert_pos_right].sum(dtype=self.dtype) else: return np.compress(minor_index == self.indices[start:end], self.data[start:end]).sum(dtype=self.dtype)
"""Return a submatrix of this matrix (new matrix is created)."""
slice0, slice1 = self._swap((slice0,slice1)) shape0, shape1 = self._swap(self.shape)
def _process_slice(sl, num): if isinstance(sl, slice): i0, i1 = sl.start, sl.stop if i0 is None: i0 = 0 elif i0 < 0: i0 = num + i0
if i1 is None: i1 = num elif i1 < 0: i1 = num + i1
return i0, i1
elif np.isscalar(sl): if sl < 0: sl += num
return sl, sl + 1
else: return sl[0], sl[1]
def _in_bounds(i0, i1, num): if not (0 <= i0 < num) or not (0 < i1 <= num) or not (i0 < i1): raise IndexError("index out of bounds: 0<=%d<%d, 0<=%d<%d, %d<%d" % (i0, num, i1, num, i0, i1))
i0, i1 = _process_slice(slice0, shape0) j0, j1 = _process_slice(slice1, shape1) _in_bounds(i0, i1, shape0) _in_bounds(j0, j1, shape1)
aux = _sparsetools.get_csr_submatrix(shape0, shape1, self.indptr, self.indices, self.data, i0, i1, j0, j1)
data, indices, indptr = aux[2], aux[1], aux[0] shape = self._swap((i1 - i0, j1 - j0))
return self.__class__((data, indices, indptr), shape=shape)
###################### # Conversion methods # ######################
major_dim, minor_dim = self._swap(self.shape) minor_indices = self.indices major_indices = np.empty(len(minor_indices), dtype=self.indices.dtype) _sparsetools.expandptr(major_dim, self.indptr, major_indices) row, col = self._swap((major_indices, minor_indices))
from .coo import coo_matrix return coo_matrix((self.data, (row, col)), self.shape, copy=copy, dtype=self.dtype)
if out is None and order is None: order = self._swap('cf')[0] out = self._process_toarray_args(order, out) if not (out.flags.c_contiguous or out.flags.f_contiguous): raise ValueError('Output array must be C or F contiguous') # align ideal order with output array order if out.flags.c_contiguous: x = self.tocsr() y = out else: x = self.tocsc() y = out.T M, N = x._swap(x.shape) _sparsetools.csr_todense(M, N, x.indptr, x.indices, x.data, y) return out
############################################################## # methods that examine or modify the internal data structure # ##############################################################
"""Remove zero entries from the matrix
This is an *in place* operation """ M, N = self._swap(self.shape) _sparsetools.csr_eliminate_zeros(M, N, self.indptr, self.indices, self.data) self.prune() # nnz may have changed
"""Determine whether the matrix has sorted indices and no duplicates
Returns - True: if the above applies - False: otherwise
has_canonical_format implies has_sorted_indices, so if the latter flag is False, so will the former be; if the former is found True, the latter flag is also set. """
# first check to see if result was cached if not getattr(self, '_has_sorted_indices', True): # not sorted => not canonical self._has_canonical_format = False elif not hasattr(self, '_has_canonical_format'): self.has_canonical_format = _sparsetools.csr_has_canonical_format( len(self.indptr) - 1, self.indptr, self.indices) return self._has_canonical_format
self._has_canonical_format = bool(val) if val: self.has_sorted_indices = True
fset=__set_has_canonical_format)
"""Eliminate duplicate matrix entries by adding them together
The is an *in place* operation """ if self.has_canonical_format: return self.sort_indices()
M, N = self._swap(self.shape) _sparsetools.csr_sum_duplicates(M, N, self.indptr, self.indices, self.data)
self.prune() # nnz may have changed self.has_canonical_format = True
"""Determine whether the matrix has sorted indices
Returns - True: if the indices of the matrix are in sorted order - False: otherwise
"""
# first check to see if result was cached if not hasattr(self,'_has_sorted_indices'): self._has_sorted_indices = _sparsetools.csr_has_sorted_indices( len(self.indptr) - 1, self.indptr, self.indices) return self._has_sorted_indices
self._has_sorted_indices = bool(val)
"""Return a copy of this matrix with sorted indices """ A = self.copy() A.sort_indices() return A
# an alternative that has linear complexity is the following # although the previous option is typically faster # return self.toother().toother()
"""Sort the indices of this matrix *in place* """
if not self.has_sorted_indices: _sparsetools.csr_sort_indices(len(self.indptr) - 1, self.indptr, self.indices, self.data) self.has_sorted_indices = True
"""Remove empty space after all non-zero elements. """ major_dim = self._swap(self.shape)[0]
if len(self.indptr) != major_dim + 1: raise ValueError('index pointer has invalid length') if len(self.indices) < self.nnz: raise ValueError('indices array has fewer than nnz elements') if len(self.data) < self.nnz: raise ValueError('data array has fewer than nnz elements')
self.indices = _prune_array(self.indices[:self.nnz]) self.data = _prune_array(self.data[:self.nnz])
shape = check_shape(shape) if hasattr(self, 'blocksize'): bm, bn = self.blocksize new_M, rm = divmod(shape[0], bm) new_N, rn = divmod(shape[1], bn) if rm or rn: raise ValueError("shape must be divisible into %s blocks. " "Got %s" % (self.blocksize, shape)) M, N = self.shape[0] // bm, self.shape[1] // bn else: new_M, new_N = self._swap(shape) M, N = self._swap(self.shape)
if new_M < M: self.indices = self.indices[:self.indptr[new_M]] self.data = self.data[:self.indptr[new_M]] self.indptr = self.indptr[:new_M + 1] elif new_M > M: self.indptr = np.resize(self.indptr, new_M + 1) self.indptr[M + 1:].fill(self.indptr[M])
if new_N < N: mask = self.indices < new_N if not np.all(mask): self.indices = self.indices[mask] self.data = self.data[mask] major_index, val = self._minor_reduce(np.add, mask) self.indptr.fill(0) self.indptr[1:][major_index] = val np.cumsum(self.indptr, out=self.indptr)
self._shape = shape
################### # utility methods # ###################
# needed by _data_matrix """Returns a matrix with the same sparsity structure as self, but with different data. By default the structure arrays (i.e. .indptr and .indices) are copied. """ if copy: return self.__class__((data,self.indices.copy(),self.indptr.copy()), shape=self.shape,dtype=data.dtype) else: return self.__class__((data,self.indices,self.indptr), shape=self.shape,dtype=data.dtype)
"""apply the binary operation fn to two sparse matrices.""" other = self.__class__(other)
# e.g. csr_plus_csr, csr_minus_csr, etc. fn = getattr(_sparsetools, self.format + op + self.format)
maxnnz = self.nnz + other.nnz idx_dtype = get_index_dtype((self.indptr, self.indices, other.indptr, other.indices), maxval=maxnnz) indptr = np.empty(self.indptr.shape, dtype=idx_dtype) indices = np.empty(maxnnz, dtype=idx_dtype)
bool_ops = ['_ne_', '_lt_', '_gt_', '_le_', '_ge_'] if op in bool_ops: data = np.empty(maxnnz, dtype=np.bool_) else: data = np.empty(maxnnz, dtype=upcast(self.dtype, other.dtype))
fn(self.shape[0], self.shape[1], np.asarray(self.indptr, dtype=idx_dtype), np.asarray(self.indices, dtype=idx_dtype), self.data, np.asarray(other.indptr, dtype=idx_dtype), np.asarray(other.indices, dtype=idx_dtype), other.data, indptr, indices, data)
A = self.__class__((data, indices, indptr), shape=self.shape) A.prune()
return A
""" Divide this matrix by a second sparse matrix. """ if other.shape != self.shape: raise ValueError('inconsistent shapes')
r = self._binopt(other, '_eldiv_')
if np.issubdtype(r.dtype, np.inexact): # Eldiv leaves entries outside the combined sparsity # pattern empty, so they must be filled manually. # Everything outside of other's sparsity is NaN, and everything # inside it is either zero or defined by eldiv. out = np.empty(self.shape, dtype=self.dtype) out.fill(np.nan) row, col = other.nonzero() out[row, col] = 0 r = r.tocoo() out[r.row, r.col] = r.data out = matrix(out) else: # integers types go with nan <-> 0 out = r
return out |