1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

"""Compressed Sparse Column matrix format""" 

from __future__ import division, print_function, absolute_import 

 

__docformat__ = "restructuredtext en" 

 

__all__ = ['csc_matrix', 'isspmatrix_csc'] 

 

 

import numpy as np 

 

from .base import spmatrix 

from ._sparsetools import csc_tocsr 

from . import _sparsetools 

from .sputils import upcast, isintlike, IndexMixin, get_index_dtype 

 

from .compressed import _cs_matrix 

 

 

class csc_matrix(_cs_matrix, IndexMixin): 

""" 

Compressed Sparse Column matrix 

 

This can be instantiated in several ways: 

 

csc_matrix(D) 

with a dense matrix or rank-2 ndarray D 

 

csc_matrix(S) 

with another sparse matrix S (equivalent to S.tocsc()) 

 

csc_matrix((M, N), [dtype]) 

to construct an empty matrix with shape (M, N) 

dtype is optional, defaulting to dtype='d'. 

 

csc_matrix((data, (row_ind, col_ind)), [shape=(M, N)]) 

where ``data``, ``row_ind`` and ``col_ind`` satisfy the 

relationship ``a[row_ind[k], col_ind[k]] = data[k]``. 

 

csc_matrix((data, indices, indptr), [shape=(M, N)]) 

is the standard CSC representation where the row indices for 

column i are stored in ``indices[indptr[i]:indptr[i+1]]`` 

and their corresponding values are stored in 

``data[indptr[i]:indptr[i+1]]``. If the shape parameter is 

not supplied, the matrix dimensions are inferred from 

the index arrays. 

 

Attributes 

---------- 

dtype : dtype 

Data type of the matrix 

shape : 2-tuple 

Shape of the matrix 

ndim : int 

Number of dimensions (this is always 2) 

nnz 

Number of nonzero elements 

data 

Data array of the matrix 

indices 

CSC format index array 

indptr 

CSC format index pointer array 

has_sorted_indices 

Whether indices are sorted 

 

Notes 

----- 

 

Sparse matrices can be used in arithmetic operations: they support 

addition, subtraction, multiplication, division, and matrix power. 

 

Advantages of the CSC format 

- efficient arithmetic operations CSC + CSC, CSC * CSC, etc. 

- efficient column slicing 

- fast matrix vector products (CSR, BSR may be faster) 

 

Disadvantages of the CSC format 

- slow row slicing operations (consider CSR) 

- changes to the sparsity structure are expensive (consider LIL or DOK) 

 

 

Examples 

-------- 

 

>>> import numpy as np 

>>> from scipy.sparse import csc_matrix 

>>> csc_matrix((3, 4), dtype=np.int8).toarray() 

array([[0, 0, 0, 0], 

[0, 0, 0, 0], 

[0, 0, 0, 0]], dtype=int8) 

 

>>> row = np.array([0, 2, 2, 0, 1, 2]) 

>>> col = np.array([0, 0, 1, 2, 2, 2]) 

>>> data = np.array([1, 2, 3, 4, 5, 6]) 

>>> csc_matrix((data, (row, col)), shape=(3, 3)).toarray() 

array([[1, 0, 4], 

[0, 0, 5], 

[2, 3, 6]]) 

 

>>> indptr = np.array([0, 2, 3, 6]) 

>>> indices = np.array([0, 2, 2, 0, 1, 2]) 

>>> data = np.array([1, 2, 3, 4, 5, 6]) 

>>> csc_matrix((data, indices, indptr), shape=(3, 3)).toarray() 

array([[1, 0, 4], 

[0, 0, 5], 

[2, 3, 6]]) 

 

""" 

format = 'csc' 

 

def transpose(self, axes=None, copy=False): 

if axes is not None: 

raise ValueError(("Sparse matrices do not support " 

"an 'axes' parameter because swapping " 

"dimensions is the only logical permutation.")) 

 

M, N = self.shape 

 

from .csr import csr_matrix 

return csr_matrix((self.data, self.indices, 

self.indptr), (N, M), copy=copy) 

 

transpose.__doc__ = spmatrix.transpose.__doc__ 

 

def __iter__(self): 

for r in self.tocsr(): 

yield r 

 

def tocsc(self, copy=False): 

if copy: 

return self.copy() 

else: 

return self 

 

tocsc.__doc__ = spmatrix.tocsc.__doc__ 

 

def tocsr(self, copy=False): 

M,N = self.shape 

idx_dtype = get_index_dtype((self.indptr, self.indices), 

maxval=max(self.nnz, N)) 

indptr = np.empty(M + 1, dtype=idx_dtype) 

indices = np.empty(self.nnz, dtype=idx_dtype) 

data = np.empty(self.nnz, dtype=upcast(self.dtype)) 

 

csc_tocsr(M, N, 

self.indptr.astype(idx_dtype), 

self.indices.astype(idx_dtype), 

self.data, 

indptr, 

indices, 

data) 

 

from .csr import csr_matrix 

A = csr_matrix((data, indices, indptr), shape=self.shape, copy=False) 

A.has_sorted_indices = True 

return A 

 

tocsr.__doc__ = spmatrix.tocsr.__doc__ 

 

def __getitem__(self, key): 

# Use CSR to implement fancy indexing. 

 

row, col = self._unpack_index(key) 

# Things that return submatrices. row or col is a int or slice. 

if (isinstance(row, slice) or isinstance(col, slice) or 

isintlike(row) or isintlike(col)): 

return self.T[col, row].T 

# Things that return a sequence of values. 

else: 

return self.T[col, row] 

 

def nonzero(self): 

# CSC can't use _cs_matrix's .nonzero method because it 

# returns the indices sorted for self transposed. 

 

# Get row and col indices, from _cs_matrix.tocoo 

major_dim, minor_dim = self._swap(self.shape) 

minor_indices = self.indices 

major_indices = np.empty(len(minor_indices), dtype=self.indices.dtype) 

_sparsetools.expandptr(major_dim, self.indptr, major_indices) 

row, col = self._swap((major_indices, minor_indices)) 

 

# Remove explicit zeros 

nz_mask = self.data != 0 

row = row[nz_mask] 

col = col[nz_mask] 

 

# Sort them to be in C-style order 

ind = np.argsort(row, kind='mergesort') 

row = row[ind] 

col = col[ind] 

 

return row, col 

 

nonzero.__doc__ = _cs_matrix.nonzero.__doc__ 

 

def getrow(self, i): 

"""Returns a copy of row i of the matrix, as a (1 x n) 

CSR matrix (row vector). 

""" 

# we convert to CSR to maintain compatibility with old impl. 

# in spmatrix.getrow() 

return self._get_submatrix(i, slice(None)).tocsr() 

 

def getcol(self, i): 

"""Returns a copy of column i of the matrix, as a (m x 1) 

CSC matrix (column vector). 

""" 

M, N = self.shape 

i = int(i) 

if i < 0: 

i += N 

if i < 0 or i >= N: 

raise IndexError('index (%d) out of range' % i) 

idx = slice(*self.indptr[i:i+2]) 

data = self.data[idx].copy() 

indices = self.indices[idx].copy() 

indptr = np.array([0, len(indices)], dtype=self.indptr.dtype) 

return csc_matrix((data, indices, indptr), shape=(M, 1), 

dtype=self.dtype, copy=False) 

 

# these functions are used by the parent class (_cs_matrix) 

# to remove redudancy between csc_matrix and csr_matrix 

def _swap(self, x): 

"""swap the members of x if this is a column-oriented matrix 

""" 

return x[1], x[0] 

 

 

def isspmatrix_csc(x): 

"""Is x of csc_matrix type? 

 

Parameters 

---------- 

x 

object to check for being a csc matrix 

 

Returns 

------- 

bool 

True if x is a csc matrix, False otherwise 

 

Examples 

-------- 

>>> from scipy.sparse import csc_matrix, isspmatrix_csc 

>>> isspmatrix_csc(csc_matrix([[5]])) 

True 

 

>>> from scipy.sparse import csc_matrix, csr_matrix, isspmatrix_csc 

>>> isspmatrix_csc(csr_matrix([[5]])) 

False 

""" 

return isinstance(x, csc_matrix)