1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

"""Base class for sparse matrice with a .data attribute 

 

subclasses must provide a _with_data() method that 

creates a new matrix with the same sparsity pattern 

as self but with a different data array 

 

""" 

 

from __future__ import division, print_function, absolute_import 

 

import numpy as np 

 

from .base import spmatrix, _ufuncs_with_fixed_point_at_zero 

from .sputils import isscalarlike, validateaxis, matrix 

 

__all__ = [] 

 

 

# TODO implement all relevant operations 

# use .data.__methods__() instead of /=, *=, etc. 

class _data_matrix(spmatrix): 

def __init__(self): 

spmatrix.__init__(self) 

 

def _get_dtype(self): 

return self.data.dtype 

 

def _set_dtype(self, newtype): 

self.data.dtype = newtype 

dtype = property(fget=_get_dtype, fset=_set_dtype) 

 

def _deduped_data(self): 

if hasattr(self, 'sum_duplicates'): 

self.sum_duplicates() 

return self.data 

 

def __abs__(self): 

return self._with_data(abs(self._deduped_data())) 

 

def _real(self): 

return self._with_data(self.data.real) 

 

def _imag(self): 

return self._with_data(self.data.imag) 

 

def __neg__(self): 

if self.dtype.kind == 'b': 

raise NotImplementedError('negating a sparse boolean ' 

'matrix is not supported') 

return self._with_data(-self.data) 

 

def __imul__(self, other): # self *= other 

if isscalarlike(other): 

self.data *= other 

return self 

else: 

return NotImplemented 

 

def __itruediv__(self, other): # self /= other 

if isscalarlike(other): 

recip = 1.0 / other 

self.data *= recip 

return self 

else: 

return NotImplemented 

 

def astype(self, dtype, casting='unsafe', copy=True): 

dtype = np.dtype(dtype) 

if self.dtype != dtype: 

return self._with_data( 

self._deduped_data().astype(dtype, casting=casting, copy=copy), 

copy=copy) 

elif copy: 

return self.copy() 

else: 

return self 

 

astype.__doc__ = spmatrix.astype.__doc__ 

 

def conj(self, copy=True): 

if np.issubdtype(self.dtype, np.complexfloating): 

return self._with_data(self.data.conj(), copy=copy) 

elif copy: 

return self.copy() 

else: 

return self 

 

conj.__doc__ = spmatrix.conj.__doc__ 

 

def copy(self): 

return self._with_data(self.data.copy(), copy=True) 

 

copy.__doc__ = spmatrix.copy.__doc__ 

 

def count_nonzero(self): 

return np.count_nonzero(self._deduped_data()) 

 

count_nonzero.__doc__ = spmatrix.count_nonzero.__doc__ 

 

def power(self, n, dtype=None): 

""" 

This function performs element-wise power. 

 

Parameters 

---------- 

n : n is a scalar 

 

dtype : If dtype is not specified, the current dtype will be preserved. 

""" 

if not isscalarlike(n): 

raise NotImplementedError("input is not scalar") 

 

data = self._deduped_data() 

if dtype is not None: 

data = data.astype(dtype) 

return self._with_data(data ** n) 

 

########################### 

# Multiplication handlers # 

########################### 

 

def _mul_scalar(self, other): 

return self._with_data(self.data * other) 

 

 

# Add the numpy unary ufuncs for which func(0) = 0 to _data_matrix. 

for npfunc in _ufuncs_with_fixed_point_at_zero: 

name = npfunc.__name__ 

 

def _create_method(op): 

def method(self): 

result = op(self._deduped_data()) 

return self._with_data(result, copy=True) 

 

method.__doc__ = ("Element-wise %s.\n\n" 

"See numpy.%s for more information." % (name, name)) 

method.__name__ = name 

 

return method 

 

setattr(_data_matrix, name, _create_method(npfunc)) 

 

 

def _find_missing_index(ind, n): 

for k, a in enumerate(ind): 

if k != a: 

return k 

 

k += 1 

if k < n: 

return k 

else: 

return -1 

 

 

class _minmax_mixin(object): 

"""Mixin for min and max methods. 

 

These are not implemented for dia_matrix, hence the separate class. 

""" 

 

def _min_or_max_axis(self, axis, min_or_max): 

N = self.shape[axis] 

if N == 0: 

raise ValueError("zero-size array to reduction operation") 

M = self.shape[1 - axis] 

 

mat = self.tocsc() if axis == 0 else self.tocsr() 

mat.sum_duplicates() 

 

major_index, value = mat._minor_reduce(min_or_max) 

not_full = np.diff(mat.indptr)[major_index] < N 

value[not_full] = min_or_max(value[not_full], 0) 

 

mask = value != 0 

major_index = np.compress(mask, major_index) 

value = np.compress(mask, value) 

 

from . import coo_matrix 

if axis == 0: 

return coo_matrix((value, (np.zeros(len(value)), major_index)), 

dtype=self.dtype, shape=(1, M)) 

else: 

return coo_matrix((value, (major_index, np.zeros(len(value)))), 

dtype=self.dtype, shape=(M, 1)) 

 

def _min_or_max(self, axis, out, min_or_max): 

if out is not None: 

raise ValueError(("Sparse matrices do not support " 

"an 'out' parameter.")) 

 

validateaxis(axis) 

 

if axis is None: 

if 0 in self.shape: 

raise ValueError("zero-size array to reduction operation") 

 

zero = self.dtype.type(0) 

if self.nnz == 0: 

return zero 

m = min_or_max.reduce(self._deduped_data().ravel()) 

if self.nnz != np.product(self.shape): 

m = min_or_max(zero, m) 

return m 

 

if axis < 0: 

axis += 2 

 

if (axis == 0) or (axis == 1): 

return self._min_or_max_axis(axis, min_or_max) 

else: 

raise ValueError("axis out of range") 

 

def _arg_min_or_max_axis(self, axis, op, compare): 

if self.shape[axis] == 0: 

raise ValueError("Can't apply the operation along a zero-sized " 

"dimension.") 

 

if axis < 0: 

axis += 2 

 

zero = self.dtype.type(0) 

 

mat = self.tocsc() if axis == 0 else self.tocsr() 

mat.sum_duplicates() 

 

ret_size, line_size = mat._swap(mat.shape) 

ret = np.zeros(ret_size, dtype=int) 

 

nz_lines, = np.nonzero(np.diff(mat.indptr)) 

for i in nz_lines: 

p, q = mat.indptr[i:i + 2] 

data = mat.data[p:q] 

indices = mat.indices[p:q] 

am = op(data) 

m = data[am] 

if compare(m, zero) or q - p == line_size: 

ret[i] = indices[am] 

else: 

zero_ind = _find_missing_index(indices, line_size) 

if m == zero: 

ret[i] = min(am, zero_ind) 

else: 

ret[i] = zero_ind 

 

if axis == 1: 

ret = ret.reshape(-1, 1) 

 

return matrix(ret) 

 

def _arg_min_or_max(self, axis, out, op, compare): 

if out is not None: 

raise ValueError("Sparse matrices do not support " 

"an 'out' parameter.") 

 

validateaxis(axis) 

 

if axis is None: 

if 0 in self.shape: 

raise ValueError("Can't apply the operation to " 

"an empty matrix.") 

 

if self.nnz == 0: 

return 0 

else: 

zero = self.dtype.type(0) 

mat = self.tocoo() 

mat.sum_duplicates() 

am = op(mat.data) 

m = mat.data[am] 

 

if compare(m, zero): 

return mat.row[am] * mat.shape[1] + mat.col[am] 

else: 

size = np.product(mat.shape) 

if size == mat.nnz: 

return am 

else: 

ind = mat.row * mat.shape[1] + mat.col 

zero_ind = _find_missing_index(ind, size) 

if m == zero: 

return min(zero_ind, am) 

else: 

return zero_ind 

 

return self._arg_min_or_max_axis(axis, op, compare) 

 

def max(self, axis=None, out=None): 

""" 

Return the maximum of the matrix or maximum along an axis. 

This takes all elements into account, not just the non-zero ones. 

 

Parameters 

---------- 

axis : {-2, -1, 0, 1, None} optional 

Axis along which the sum is computed. The default is to 

compute the maximum over all the matrix elements, returning 

a scalar (i.e. `axis` = `None`). 

 

out : None, optional 

This argument is in the signature *solely* for NumPy 

compatibility reasons. Do not pass in anything except 

for the default value, as this argument is not used. 

 

Returns 

------- 

amax : coo_matrix or scalar 

Maximum of `a`. If `axis` is None, the result is a scalar value. 

If `axis` is given, the result is a sparse.coo_matrix of dimension 

``a.ndim - 1``. 

 

See Also 

-------- 

min : The minimum value of a sparse matrix along a given axis. 

np.matrix.max : NumPy's implementation of 'max' for matrices 

 

""" 

return self._min_or_max(axis, out, np.maximum) 

 

def min(self, axis=None, out=None): 

""" 

Return the minimum of the matrix or maximum along an axis. 

This takes all elements into account, not just the non-zero ones. 

 

Parameters 

---------- 

axis : {-2, -1, 0, 1, None} optional 

Axis along which the sum is computed. The default is to 

compute the minimum over all the matrix elements, returning 

a scalar (i.e. `axis` = `None`). 

 

out : None, optional 

This argument is in the signature *solely* for NumPy 

compatibility reasons. Do not pass in anything except for 

the default value, as this argument is not used. 

 

Returns 

------- 

amin : coo_matrix or scalar 

Minimum of `a`. If `axis` is None, the result is a scalar value. 

If `axis` is given, the result is a sparse.coo_matrix of dimension 

``a.ndim - 1``. 

 

See Also 

-------- 

max : The maximum value of a sparse matrix along a given axis. 

np.matrix.min : NumPy's implementation of 'min' for matrices 

 

""" 

return self._min_or_max(axis, out, np.minimum) 

 

def argmax(self, axis=None, out=None): 

"""Return indices of maximum elements along an axis. 

 

Implicit zero elements are also taken into account. If there are 

several maximum values, the index of the first occurrence is returned. 

 

Parameters 

---------- 

axis : {-2, -1, 0, 1, None}, optional 

Axis along which the argmax is computed. If None (default), index 

of the maximum element in the flatten data is returned. 

out : None, optional 

This argument is in the signature *solely* for NumPy 

compatibility reasons. Do not pass in anything except for 

the default value, as this argument is not used. 

 

Returns 

------- 

ind : np.matrix or int 

Indices of maximum elements. If matrix, its size along `axis` is 1. 

""" 

return self._arg_min_or_max(axis, out, np.argmax, np.greater) 

 

def argmin(self, axis=None, out=None): 

"""Return indices of minimum elements along an axis. 

 

Implicit zero elements are also taken into account. If there are 

several minimum values, the index of the first occurrence is returned. 

 

Parameters 

---------- 

axis : {-2, -1, 0, 1, None}, optional 

Axis along which the argmin is computed. If None (default), index 

of the minimum element in the flatten data is returned. 

out : None, optional 

This argument is in the signature *solely* for NumPy 

compatibility reasons. Do not pass in anything except for 

the default value, as this argument is not used. 

 

Returns 

------- 

ind : np.matrix or int 

Indices of minimum elements. If matrix, its size along `axis` is 1. 

""" 

return self._arg_min_or_max(axis, out, np.argmin, np.less)