1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

"""LInked List sparse matrix class 

""" 

 

from __future__ import division, print_function, absolute_import 

 

__docformat__ = "restructuredtext en" 

 

__all__ = ['lil_matrix', 'isspmatrix_lil'] 

 

from bisect import bisect_left 

 

import numpy as np 

 

from scipy._lib.six import xrange, zip 

from .base import spmatrix, isspmatrix 

from .sputils import (getdtype, isshape, isscalarlike, IndexMixin, 

upcast_scalar, get_index_dtype, isintlike, check_shape, 

check_reshape_kwargs, 

asmatrix) 

from . import _csparsetools 

 

 

class lil_matrix(spmatrix, IndexMixin): 

"""Row-based linked list sparse matrix 

 

This is a structure for constructing sparse matrices incrementally. 

Note that inserting a single item can take linear time in the worst case; 

to construct a matrix efficiently, make sure the items are pre-sorted by 

index, per row. 

 

This can be instantiated in several ways: 

lil_matrix(D) 

with a dense matrix or rank-2 ndarray D 

 

lil_matrix(S) 

with another sparse matrix S (equivalent to S.tolil()) 

 

lil_matrix((M, N), [dtype]) 

to construct an empty matrix with shape (M, N) 

dtype is optional, defaulting to dtype='d'. 

 

Attributes 

---------- 

dtype : dtype 

Data type of the matrix 

shape : 2-tuple 

Shape of the matrix 

ndim : int 

Number of dimensions (this is always 2) 

nnz 

Number of nonzero elements 

data 

LIL format data array of the matrix 

rows 

LIL format row index array of the matrix 

 

Notes 

----- 

 

Sparse matrices can be used in arithmetic operations: they support 

addition, subtraction, multiplication, division, and matrix power. 

 

Advantages of the LIL format 

- supports flexible slicing 

- changes to the matrix sparsity structure are efficient 

 

Disadvantages of the LIL format 

- arithmetic operations LIL + LIL are slow (consider CSR or CSC) 

- slow column slicing (consider CSC) 

- slow matrix vector products (consider CSR or CSC) 

 

Intended Usage 

- LIL is a convenient format for constructing sparse matrices 

- once a matrix has been constructed, convert to CSR or 

CSC format for fast arithmetic and matrix vector operations 

- consider using the COO format when constructing large matrices 

 

Data Structure 

- An array (``self.rows``) of rows, each of which is a sorted 

list of column indices of non-zero elements. 

- The corresponding nonzero values are stored in similar 

fashion in ``self.data``. 

 

 

""" 

format = 'lil' 

 

def __init__(self, arg1, shape=None, dtype=None, copy=False): 

spmatrix.__init__(self) 

self.dtype = getdtype(dtype, arg1, default=float) 

 

# First get the shape 

if isspmatrix(arg1): 

if isspmatrix_lil(arg1) and copy: 

A = arg1.copy() 

else: 

A = arg1.tolil() 

 

if dtype is not None: 

A = A.astype(dtype) 

 

self._shape = check_shape(A.shape) 

self.dtype = A.dtype 

self.rows = A.rows 

self.data = A.data 

elif isinstance(arg1,tuple): 

if isshape(arg1): 

if shape is not None: 

raise ValueError('invalid use of shape parameter') 

M, N = arg1 

self._shape = check_shape((M, N)) 

self.rows = np.empty((M,), dtype=object) 

self.data = np.empty((M,), dtype=object) 

for i in range(M): 

self.rows[i] = [] 

self.data[i] = [] 

else: 

raise TypeError('unrecognized lil_matrix constructor usage') 

else: 

# assume A is dense 

try: 

A = asmatrix(arg1) 

except TypeError: 

raise TypeError('unsupported matrix type') 

else: 

from .csr import csr_matrix 

A = csr_matrix(A, dtype=dtype).tolil() 

 

self._shape = check_shape(A.shape) 

self.dtype = A.dtype 

self.rows = A.rows 

self.data = A.data 

 

def __iadd__(self,other): 

self[:,:] = self + other 

return self 

 

def __isub__(self,other): 

self[:,:] = self - other 

return self 

 

def __imul__(self,other): 

if isscalarlike(other): 

self[:,:] = self * other 

return self 

else: 

return NotImplemented 

 

def __itruediv__(self,other): 

if isscalarlike(other): 

self[:,:] = self / other 

return self 

else: 

return NotImplemented 

 

# Whenever the dimensions change, empty lists should be created for each 

# row 

 

def getnnz(self, axis=None): 

if axis is None: 

return sum([len(rowvals) for rowvals in self.data]) 

if axis < 0: 

axis += 2 

if axis == 0: 

out = np.zeros(self.shape[1], dtype=np.intp) 

for row in self.rows: 

out[row] += 1 

return out 

elif axis == 1: 

return np.array([len(rowvals) for rowvals in self.data], dtype=np.intp) 

else: 

raise ValueError('axis out of bounds') 

 

def count_nonzero(self): 

return sum(np.count_nonzero(rowvals) for rowvals in self.data) 

 

getnnz.__doc__ = spmatrix.getnnz.__doc__ 

count_nonzero.__doc__ = spmatrix.count_nonzero.__doc__ 

 

def __str__(self): 

val = '' 

for i, row in enumerate(self.rows): 

for pos, j in enumerate(row): 

val += " %s\t%s\n" % (str((i, j)), str(self.data[i][pos])) 

return val[:-1] 

 

def getrowview(self, i): 

"""Returns a view of the 'i'th row (without copying). 

""" 

new = lil_matrix((1, self.shape[1]), dtype=self.dtype) 

new.rows[0] = self.rows[i] 

new.data[0] = self.data[i] 

return new 

 

def getrow(self, i): 

"""Returns a copy of the 'i'th row. 

""" 

i = self._check_row_bounds(i) 

new = lil_matrix((1, self.shape[1]), dtype=self.dtype) 

new.rows[0] = self.rows[i][:] 

new.data[0] = self.data[i][:] 

return new 

 

def _check_row_bounds(self, i): 

if i < 0: 

i += self.shape[0] 

if i < 0 or i >= self.shape[0]: 

raise IndexError('row index out of bounds') 

return i 

 

def _check_col_bounds(self, j): 

if j < 0: 

j += self.shape[1] 

if j < 0 or j >= self.shape[1]: 

raise IndexError('column index out of bounds') 

return j 

 

def __getitem__(self, index): 

"""Return the element(s) index=(i, j), where j may be a slice. 

This always returns a copy for consistency, since slices into 

Python lists return copies. 

""" 

 

# Scalar fast path first 

if isinstance(index, tuple) and len(index) == 2: 

i, j = index 

# Use isinstance checks for common index types; this is 

# ~25-50% faster than isscalarlike. Other types are 

# handled below. 

if ((isinstance(i, int) or isinstance(i, np.integer)) and 

(isinstance(j, int) or isinstance(j, np.integer))): 

v = _csparsetools.lil_get1(self.shape[0], self.shape[1], 

self.rows, self.data, 

i, j) 

return self.dtype.type(v) 

 

# Utilities found in IndexMixin 

i, j = self._unpack_index(index) 

 

# Proper check for other scalar index types 

i_intlike = isintlike(i) 

j_intlike = isintlike(j) 

 

if i_intlike and j_intlike: 

v = _csparsetools.lil_get1(self.shape[0], self.shape[1], 

self.rows, self.data, 

i, j) 

return self.dtype.type(v) 

elif j_intlike or isinstance(j, slice): 

# column slicing fast path 

if j_intlike: 

j = self._check_col_bounds(j) 

j = slice(j, j+1) 

 

if i_intlike: 

i = self._check_row_bounds(i) 

i = xrange(i, i+1) 

i_shape = None 

elif isinstance(i, slice): 

i = xrange(*i.indices(self.shape[0])) 

i_shape = None 

else: 

i = np.atleast_1d(i) 

i_shape = i.shape 

 

if i_shape is None or len(i_shape) == 1: 

return self._get_row_ranges(i, j) 

 

i, j = self._index_to_arrays(i, j) 

if i.size == 0: 

return lil_matrix(i.shape, dtype=self.dtype) 

 

new = lil_matrix(i.shape, dtype=self.dtype) 

 

i, j = _prepare_index_for_memoryview(i, j) 

_csparsetools.lil_fancy_get(self.shape[0], self.shape[1], 

self.rows, self.data, 

new.rows, new.data, 

i, j) 

return new 

 

def _get_row_ranges(self, rows, col_slice): 

""" 

Fast path for indexing in the case where column index is slice. 

 

This gains performance improvement over brute force by more 

efficient skipping of zeros, by accessing the elements 

column-wise in order. 

 

Parameters 

---------- 

rows : sequence or xrange 

Rows indexed. If xrange, must be within valid bounds. 

col_slice : slice 

Columns indexed 

 

""" 

j_start, j_stop, j_stride = col_slice.indices(self.shape[1]) 

col_range = xrange(j_start, j_stop, j_stride) 

nj = len(col_range) 

new = lil_matrix((len(rows), nj), dtype=self.dtype) 

 

_csparsetools.lil_get_row_ranges(self.shape[0], self.shape[1], 

self.rows, self.data, 

new.rows, new.data, 

rows, 

j_start, j_stop, j_stride, nj) 

 

return new 

 

def __setitem__(self, index, x): 

# Scalar fast path first 

if isinstance(index, tuple) and len(index) == 2: 

i, j = index 

# Use isinstance checks for common index types; this is 

# ~25-50% faster than isscalarlike. Scalar index 

# assignment for other types is handled below together 

# with fancy indexing. 

if ((isinstance(i, int) or isinstance(i, np.integer)) and 

(isinstance(j, int) or isinstance(j, np.integer))): 

x = self.dtype.type(x) 

if x.size > 1: 

# Triggered if input was an ndarray 

raise ValueError("Trying to assign a sequence to an item") 

_csparsetools.lil_insert(self.shape[0], self.shape[1], 

self.rows, self.data, i, j, x) 

return 

 

# General indexing 

i, j = self._unpack_index(index) 

 

# shortcut for common case of full matrix assign: 

if (isspmatrix(x) and isinstance(i, slice) and i == slice(None) and 

isinstance(j, slice) and j == slice(None) 

and x.shape == self.shape): 

x = lil_matrix(x, dtype=self.dtype) 

self.rows = x.rows 

self.data = x.data 

return 

 

i, j = self._index_to_arrays(i, j) 

 

if isspmatrix(x): 

x = x.toarray() 

 

# Make x and i into the same shape 

x = np.asarray(x, dtype=self.dtype) 

x, _ = np.broadcast_arrays(x, i) 

 

if x.shape != i.shape: 

raise ValueError("shape mismatch in assignment") 

 

# Set values 

i, j, x = _prepare_index_for_memoryview(i, j, x) 

_csparsetools.lil_fancy_set(self.shape[0], self.shape[1], 

self.rows, self.data, 

i, j, x) 

 

def _mul_scalar(self, other): 

if other == 0: 

# Multiply by zero: return the zero matrix 

new = lil_matrix(self.shape, dtype=self.dtype) 

else: 

res_dtype = upcast_scalar(self.dtype, other) 

 

new = self.copy() 

new = new.astype(res_dtype) 

# Multiply this scalar by every element. 

for j, rowvals in enumerate(new.data): 

new.data[j] = [val*other for val in rowvals] 

return new 

 

def __truediv__(self, other): # self / other 

if isscalarlike(other): 

new = self.copy() 

# Divide every element by this scalar 

for j, rowvals in enumerate(new.data): 

new.data[j] = [val/other for val in rowvals] 

return new 

else: 

return self.tocsr() / other 

 

def copy(self): 

from copy import deepcopy 

new = lil_matrix(self.shape, dtype=self.dtype) 

new.data = deepcopy(self.data) 

new.rows = deepcopy(self.rows) 

return new 

 

copy.__doc__ = spmatrix.copy.__doc__ 

 

def reshape(self, *args, **kwargs): 

shape = check_shape(args, self.shape) 

order, copy = check_reshape_kwargs(kwargs) 

 

# Return early if reshape is not required 

if shape == self.shape: 

if copy: 

return self.copy() 

else: 

return self 

 

new = lil_matrix(shape, dtype=self.dtype) 

 

if order == 'C': 

ncols = self.shape[1] 

for i, row in enumerate(self.rows): 

for col, j in enumerate(row): 

new_r, new_c = np.unravel_index(i * ncols + j, shape) 

new[new_r, new_c] = self[i, j] 

elif order == 'F': 

nrows = self.shape[0] 

for i, row in enumerate(self.rows): 

for col, j in enumerate(row): 

new_r, new_c = np.unravel_index(i + j * nrows, shape, order) 

new[new_r, new_c] = self[i, j] 

else: 

raise ValueError("'order' must be 'C' or 'F'") 

 

return new 

 

reshape.__doc__ = spmatrix.reshape.__doc__ 

 

def resize(self, *shape): 

shape = check_shape(shape) 

new_M, new_N = shape 

M, N = self.shape 

 

if new_M < M: 

self.rows = self.rows[:new_M] 

self.data = self.data[:new_M] 

elif new_M > M: 

self.rows = np.resize(self.rows, new_M) 

self.data = np.resize(self.data, new_M) 

for i in range(M, new_M): 

self.rows[i] = [] 

self.data[i] = [] 

 

if new_N < N: 

for row, data in zip(self.rows, self.data): 

trunc = bisect_left(row, new_N) 

del row[trunc:] 

del data[trunc:] 

 

self._shape = shape 

 

resize.__doc__ = spmatrix.resize.__doc__ 

 

def toarray(self, order=None, out=None): 

d = self._process_toarray_args(order, out) 

for i, row in enumerate(self.rows): 

for pos, j in enumerate(row): 

d[i, j] = self.data[i][pos] 

return d 

 

toarray.__doc__ = spmatrix.toarray.__doc__ 

 

def transpose(self, axes=None, copy=False): 

return self.tocsr(copy=copy).transpose(axes=axes, copy=False).tolil(copy=False) 

 

transpose.__doc__ = spmatrix.transpose.__doc__ 

 

def tolil(self, copy=False): 

if copy: 

return self.copy() 

else: 

return self 

 

tolil.__doc__ = spmatrix.tolil.__doc__ 

 

def tocsr(self, copy=False): 

lst = [len(x) for x in self.rows] 

idx_dtype = get_index_dtype(maxval=max(self.shape[1], sum(lst))) 

 

indptr = np.cumsum([0] + lst, dtype=idx_dtype) 

indices = np.array([x for y in self.rows for x in y], dtype=idx_dtype) 

data = np.array([x for y in self.data for x in y], dtype=self.dtype) 

 

from .csr import csr_matrix 

return csr_matrix((data, indices, indptr), shape=self.shape) 

 

tocsr.__doc__ = spmatrix.tocsr.__doc__ 

 

 

def _prepare_index_for_memoryview(i, j, x=None): 

""" 

Convert index and data arrays to form suitable for passing to the 

Cython fancy getset routines. 

 

The conversions are necessary since to (i) ensure the integer 

index arrays are in one of the accepted types, and (ii) to ensure 

the arrays are writable so that Cython memoryview support doesn't 

choke on them. 

 

Parameters 

---------- 

i, j 

Index arrays 

x : optional 

Data arrays 

 

Returns 

------- 

i, j, x 

Re-formatted arrays (x is omitted, if input was None) 

 

""" 

if i.dtype > j.dtype: 

j = j.astype(i.dtype) 

elif i.dtype < j.dtype: 

i = i.astype(j.dtype) 

 

if not i.flags.writeable or i.dtype not in (np.int32, np.int64): 

i = i.astype(np.intp) 

if not j.flags.writeable or j.dtype not in (np.int32, np.int64): 

j = j.astype(np.intp) 

 

if x is not None: 

if not x.flags.writeable: 

x = x.copy() 

return i, j, x 

else: 

return i, j 

 

 

def isspmatrix_lil(x): 

"""Is x of lil_matrix type? 

 

Parameters 

---------- 

x 

object to check for being a lil matrix 

 

Returns 

------- 

bool 

True if x is a lil matrix, False otherwise 

 

Examples 

-------- 

>>> from scipy.sparse import lil_matrix, isspmatrix_lil 

>>> isspmatrix_lil(lil_matrix([[5]])) 

True 

 

>>> from scipy.sparse import lil_matrix, csr_matrix, isspmatrix_lil 

>>> isspmatrix_lil(csr_matrix([[5]])) 

False 

""" 

return isinstance(x, lil_matrix)