1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

# Copyright (C) 2015, Pauli Virtanen <pav@iki.fi> 

# Distributed under the same license as Scipy. 

 

from __future__ import division, print_function, absolute_import 

 

import warnings 

import numpy as np 

from numpy.linalg import LinAlgError 

from scipy._lib.six import xrange 

from scipy.linalg import (get_blas_funcs, qr, solve, svd, qr_insert, lstsq) 

from scipy.sparse.linalg.isolve.utils import make_system 

 

 

__all__ = ['gcrotmk'] 

 

 

def _fgmres(matvec, v0, m, atol, lpsolve=None, rpsolve=None, cs=(), outer_v=(), 

prepend_outer_v=False): 

""" 

FGMRES Arnoldi process, with optional projection or augmentation 

 

Parameters 

---------- 

matvec : callable 

Operation A*x 

v0 : ndarray 

Initial vector, normalized to nrm2(v0) == 1 

m : int 

Number of GMRES rounds 

atol : float 

Absolute tolerance for early exit 

lpsolve : callable 

Left preconditioner L 

rpsolve : callable 

Right preconditioner R 

CU : list of (ndarray, ndarray) 

Columns of matrices C and U in GCROT 

outer_v : list of ndarrays 

Augmentation vectors in LGMRES 

prepend_outer_v : bool, optional 

Whether augmentation vectors come before or after  

Krylov iterates 

 

Raises 

------ 

LinAlgError 

If nans encountered 

 

Returns 

------- 

Q, R : ndarray 

QR decomposition of the upper Hessenberg H=QR 

B : ndarray 

Projections corresponding to matrix C 

vs : list of ndarray 

Columns of matrix V 

zs : list of ndarray 

Columns of matrix Z 

y : ndarray 

Solution to ||H y - e_1||_2 = min! 

res : float 

The final (preconditioned) residual norm 

 

""" 

 

if lpsolve is None: 

lpsolve = lambda x: x 

if rpsolve is None: 

rpsolve = lambda x: x 

 

axpy, dot, scal, nrm2 = get_blas_funcs(['axpy', 'dot', 'scal', 'nrm2'], (v0,)) 

 

vs = [v0] 

zs = [] 

y = None 

res = np.nan 

 

m = m + len(outer_v) 

 

# Orthogonal projection coefficients 

B = np.zeros((len(cs), m), dtype=v0.dtype) 

 

# H is stored in QR factorized form 

Q = np.ones((1, 1), dtype=v0.dtype) 

R = np.zeros((1, 0), dtype=v0.dtype) 

 

eps = np.finfo(v0.dtype).eps 

 

breakdown = False 

 

# FGMRES Arnoldi process 

for j in xrange(m): 

# L A Z = C B + V H 

 

if prepend_outer_v and j < len(outer_v): 

z, w = outer_v[j] 

elif prepend_outer_v and j == len(outer_v): 

z = rpsolve(v0) 

w = None 

elif not prepend_outer_v and j >= m - len(outer_v): 

z, w = outer_v[j - (m - len(outer_v))] 

else: 

z = rpsolve(vs[-1]) 

w = None 

 

if w is None: 

w = lpsolve(matvec(z)) 

else: 

# w is clobbered below 

w = w.copy() 

 

w_norm = nrm2(w) 

 

# GCROT projection: L A -> (1 - C C^H) L A 

# i.e. orthogonalize against C 

for i, c in enumerate(cs): 

alpha = dot(c, w) 

B[i,j] = alpha 

w = axpy(c, w, c.shape[0], -alpha) # w -= alpha*c 

 

# Orthogonalize against V 

hcur = np.zeros(j+2, dtype=Q.dtype) 

for i, v in enumerate(vs): 

alpha = dot(v, w) 

hcur[i] = alpha 

w = axpy(v, w, v.shape[0], -alpha) # w -= alpha*v 

hcur[i+1] = nrm2(w) 

 

with np.errstate(over='ignore', divide='ignore'): 

# Careful with denormals 

alpha = 1/hcur[-1] 

 

if np.isfinite(alpha): 

w = scal(alpha, w) 

 

if not (hcur[-1] > eps * w_norm): 

# w essentially in the span of previous vectors, 

# or we have nans. Bail out after updating the QR 

# solution. 

breakdown = True 

 

vs.append(w) 

zs.append(z) 

 

# Arnoldi LSQ problem 

 

# Add new column to H=Q*R, padding other columns with zeros 

Q2 = np.zeros((j+2, j+2), dtype=Q.dtype, order='F') 

Q2[:j+1,:j+1] = Q 

Q2[j+1,j+1] = 1 

 

R2 = np.zeros((j+2, j), dtype=R.dtype, order='F') 

R2[:j+1,:] = R 

 

Q, R = qr_insert(Q2, R2, hcur, j, which='col', 

overwrite_qru=True, check_finite=False) 

 

# Transformed least squares problem 

# || Q R y - inner_res_0 * e_1 ||_2 = min! 

# Since R = [R'; 0], solution is y = inner_res_0 (R')^{-1} (Q^H)[:j,0] 

 

# Residual is immediately known 

res = abs(Q[0,-1]) 

 

# Check for termination 

if res < atol or breakdown: 

break 

 

if not np.isfinite(R[j,j]): 

# nans encountered, bail out 

raise LinAlgError() 

 

# -- Get the LSQ problem solution 

 

# The problem is triangular, but the condition number may be 

# bad (or in case of breakdown the last diagonal entry may be 

# zero), so use lstsq instead of trtrs. 

y, _, _, _, = lstsq(R[:j+1,:j+1], Q[0,:j+1].conj()) 

 

B = B[:,:j+1] 

 

return Q, R, B, vs, zs, y, res 

 

 

def gcrotmk(A, b, x0=None, tol=1e-5, maxiter=1000, M=None, callback=None, 

m=20, k=None, CU=None, discard_C=False, truncate='oldest', 

atol=None): 

""" 

Solve a matrix equation using flexible GCROT(m,k) algorithm. 

 

Parameters 

---------- 

A : {sparse matrix, dense matrix, LinearOperator} 

The real or complex N-by-N matrix of the linear system. 

b : {array, matrix} 

Right hand side of the linear system. Has shape (N,) or (N,1). 

x0 : {array, matrix} 

Starting guess for the solution. 

tol, atol : float, optional 

Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``. 

The default for ``atol`` is `tol`. 

 

.. warning:: 

 

The default value for `atol` will be changed in a future release. 

For future compatibility, specify `atol` explicitly. 

maxiter : int, optional 

Maximum number of iterations. Iteration will stop after maxiter 

steps even if the specified tolerance has not been achieved. 

M : {sparse matrix, dense matrix, LinearOperator}, optional 

Preconditioner for A. The preconditioner should approximate the 

inverse of A. gcrotmk is a 'flexible' algorithm and the preconditioner 

can vary from iteration to iteration. Effective preconditioning 

dramatically improves the rate of convergence, which implies that 

fewer iterations are needed to reach a given error tolerance. 

callback : function, optional 

User-supplied function to call after each iteration. It is called 

as callback(xk), where xk is the current solution vector. 

m : int, optional 

Number of inner FGMRES iterations per each outer iteration. 

Default: 20 

k : int, optional 

Number of vectors to carry between inner FGMRES iterations. 

According to [2]_, good values are around m. 

Default: m 

CU : list of tuples, optional 

List of tuples ``(c, u)`` which contain the columns of the matrices 

C and U in the GCROT(m,k) algorithm. For details, see [2]_. 

The list given and vectors contained in it are modified in-place. 

If not given, start from empty matrices. The ``c`` elements in the 

tuples can be ``None``, in which case the vectors are recomputed 

via ``c = A u`` on start and orthogonalized as described in [3]_. 

discard_C : bool, optional 

Discard the C-vectors at the end. Useful if recycling Krylov subspaces 

for different linear systems. 

truncate : {'oldest', 'smallest'}, optional 

Truncation scheme to use. Drop: oldest vectors, or vectors with 

smallest singular values using the scheme discussed in [1,2]. 

See [2]_ for detailed comparison. 

Default: 'oldest' 

 

Returns 

------- 

x : array or matrix 

The solution found. 

info : int 

Provides convergence information: 

 

* 0 : successful exit 

* >0 : convergence to tolerance not achieved, number of iterations 

 

References 

---------- 

.. [1] E. de Sturler, ''Truncation strategies for optimal Krylov subspace 

methods'', SIAM J. Numer. Anal. 36, 864 (1999). 

.. [2] J.E. Hicken and D.W. Zingg, ''A simplified and flexible variant 

of GCROT for solving nonsymmetric linear systems'', 

SIAM J. Sci. Comput. 32, 172 (2010). 

.. [3] M.L. Parks, E. de Sturler, G. Mackey, D.D. Johnson, S. Maiti, 

''Recycling Krylov subspaces for sequences of linear systems'', 

SIAM J. Sci. Comput. 28, 1651 (2006). 

 

""" 

A,M,x,b,postprocess = make_system(A,M,x0,b) 

 

if not np.isfinite(b).all(): 

raise ValueError("RHS must contain only finite numbers") 

 

if truncate not in ('oldest', 'smallest'): 

raise ValueError("Invalid value for 'truncate': %r" % (truncate,)) 

 

if atol is None: 

warnings.warn("scipy.sparse.linalg.gcrotmk called without specifying `atol`. " 

"The default value will change in the future. To preserve " 

"current behavior, set ``atol=tol``.", 

category=DeprecationWarning, stacklevel=2) 

atol = tol 

 

matvec = A.matvec 

psolve = M.matvec 

 

if CU is None: 

CU = [] 

 

if k is None: 

k = m 

 

axpy, dot, scal = None, None, None 

 

r = b - matvec(x) 

 

axpy, dot, scal, nrm2 = get_blas_funcs(['axpy', 'dot', 'scal', 'nrm2'], (x, r)) 

 

b_norm = nrm2(b) 

 

if discard_C: 

CU[:] = [(None, u) for c, u in CU] 

 

# Reorthogonalize old vectors 

if CU: 

# Sort already existing vectors to the front 

CU.sort(key=lambda cu: cu[0] is not None) 

 

# Fill-in missing ones 

C = np.empty((A.shape[0], len(CU)), dtype=r.dtype, order='F') 

us = [] 

j = 0 

while CU: 

# More memory-efficient: throw away old vectors as we go 

c, u = CU.pop(0) 

if c is None: 

c = matvec(u) 

C[:,j] = c 

j += 1 

us.append(u) 

 

# Orthogonalize 

Q, R, P = qr(C, overwrite_a=True, mode='economic', pivoting=True) 

del C 

 

# C := Q 

cs = list(Q.T) 

 

# U := U P R^-1, back-substitution 

new_us = [] 

for j in xrange(len(cs)): 

u = us[P[j]] 

for i in xrange(j): 

u = axpy(us[P[i]], u, u.shape[0], -R[i,j]) 

if abs(R[j,j]) < 1e-12 * abs(R[0,0]): 

# discard rest of the vectors 

break 

u = scal(1.0/R[j,j], u) 

new_us.append(u) 

 

# Form the new CU lists 

CU[:] = list(zip(cs, new_us))[::-1] 

 

if CU: 

axpy, dot = get_blas_funcs(['axpy', 'dot'], (r,)) 

 

# Solve first the projection operation with respect to the CU 

# vectors. This corresponds to modifying the initial guess to 

# be 

# 

# x' = x + U y 

# y = argmin_y || b - A (x + U y) ||^2 

# 

# The solution is y = C^H (b - A x) 

for c, u in CU: 

yc = dot(c, r) 

x = axpy(u, x, x.shape[0], yc) 

r = axpy(c, r, r.shape[0], -yc) 

 

# GCROT main iteration 

for j_outer in xrange(maxiter): 

# -- callback 

if callback is not None: 

callback(x) 

 

beta = nrm2(r) 

 

# -- check stopping condition 

beta_tol = max(atol, tol * b_norm) 

 

if beta <= beta_tol and (j_outer > 0 or CU): 

# recompute residual to avoid rounding error 

r = b - matvec(x) 

beta = nrm2(r) 

 

if beta <= beta_tol: 

j_outer = -1 

break 

 

ml = m + max(k - len(CU), 0) 

 

cs = [c for c, u in CU] 

 

try: 

Q, R, B, vs, zs, y, pres = _fgmres(matvec, 

r/beta, 

ml, 

rpsolve=psolve, 

atol=max(atol, tol*b_norm)/beta, 

cs=cs) 

y *= beta 

except LinAlgError: 

# Floating point over/underflow, non-finite result from 

# matmul etc. -- report failure. 

break 

 

# 

# At this point, 

# 

# [A U, A Z] = [C, V] G; G = [ I B ] 

# [ 0 H ] 

# 

# where [C, V] has orthonormal columns, and r = beta v_0. Moreover, 

# 

# || b - A (x + Z y + U q) ||_2 = || r - C B y - V H y - C q ||_2 = min! 

# 

# from which y = argmin_y || beta e_1 - H y ||_2, and q = -B y 

# 

 

# 

# GCROT(m,k) update 

# 

 

# Define new outer vectors 

 

# ux := (Z - U B) y 

ux = zs[0]*y[0] 

for z, yc in zip(zs[1:], y[1:]): 

ux = axpy(z, ux, ux.shape[0], yc) # ux += z*yc 

by = B.dot(y) 

for cu, byc in zip(CU, by): 

c, u = cu 

ux = axpy(u, ux, ux.shape[0], -byc) # ux -= u*byc 

 

# cx := V H y 

hy = Q.dot(R.dot(y)) 

cx = vs[0] * hy[0] 

for v, hyc in zip(vs[1:], hy[1:]): 

cx = axpy(v, cx, cx.shape[0], hyc) # cx += v*hyc 

 

# Normalize cx, maintaining cx = A ux 

# This new cx is orthogonal to the previous C, by construction 

try: 

alpha = 1/nrm2(cx) 

if not np.isfinite(alpha): 

raise FloatingPointError() 

except (FloatingPointError, ZeroDivisionError): 

# Cannot update, so skip it 

continue 

 

cx = scal(alpha, cx) 

ux = scal(alpha, ux) 

 

# Update residual and solution 

gamma = dot(cx, r) 

r = axpy(cx, r, r.shape[0], -gamma) # r -= gamma*cx 

x = axpy(ux, x, x.shape[0], gamma) # x += gamma*ux 

 

# Truncate CU 

if truncate == 'oldest': 

while len(CU) >= k and CU: 

del CU[0] 

elif truncate == 'smallest': 

if len(CU) >= k and CU: 

# cf. [1,2] 

D = solve(R[:-1,:].T, B.T).T 

W, sigma, V = svd(D) 

 

# C := C W[:,:k-1], U := U W[:,:k-1] 

new_CU = [] 

for j, w in enumerate(W[:,:k-1].T): 

c, u = CU[0] 

c = c * w[0] 

u = u * w[0] 

for cup, wp in zip(CU[1:], w[1:]): 

cp, up = cup 

c = axpy(cp, c, c.shape[0], wp) 

u = axpy(up, u, u.shape[0], wp) 

 

# Reorthogonalize at the same time; not necessary 

# in exact arithmetic, but floating point error 

# tends to accumulate here 

for cp, up in new_CU: 

alpha = dot(cp, c) 

c = axpy(cp, c, c.shape[0], -alpha) 

u = axpy(up, u, u.shape[0], -alpha) 

alpha = nrm2(c) 

c = scal(1.0/alpha, c) 

u = scal(1.0/alpha, u) 

 

new_CU.append((c, u)) 

CU[:] = new_CU 

 

# Add new vector to CU 

CU.append((cx, ux)) 

 

# Include the solution vector to the span 

CU.append((None, x.copy())) 

if discard_C: 

CU[:] = [(None, uz) for cz, uz in CU] 

 

return postprocess(x), j_outer + 1