1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

"""Iterative methods for solving linear systems""" 

 

from __future__ import division, print_function, absolute_import 

 

__all__ = ['bicg','bicgstab','cg','cgs','gmres','qmr'] 

 

import warnings 

import numpy as np 

 

from . import _iterative 

 

from scipy.sparse.linalg.interface import LinearOperator 

from scipy._lib.decorator import decorator 

from .utils import make_system 

from scipy._lib._util import _aligned_zeros 

from scipy._lib._threadsafety import non_reentrant 

 

_type_conv = {'f':'s', 'd':'d', 'F':'c', 'D':'z'} 

 

 

# Part of the docstring common to all iterative solvers 

common_doc1 = \ 

""" 

Parameters 

---------- 

A : {sparse matrix, dense matrix, LinearOperator}""" 

 

common_doc2 = \ 

"""b : {array, matrix} 

Right hand side of the linear system. Has shape (N,) or (N,1). 

 

Returns 

------- 

x : {array, matrix} 

The converged solution. 

info : integer 

Provides convergence information: 

0 : successful exit 

>0 : convergence to tolerance not achieved, number of iterations 

<0 : illegal input or breakdown 

 

Other Parameters 

---------------- 

x0 : {array, matrix} 

Starting guess for the solution. 

tol, atol : float, optional 

Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``. 

The default for ``atol`` is ``'legacy'``, which emulates 

a different legacy behavior. 

 

.. warning:: 

 

The default value for `atol` will be changed in a future release. 

For future compatibility, specify `atol` explicitly. 

maxiter : integer 

Maximum number of iterations. Iteration will stop after maxiter 

steps even if the specified tolerance has not been achieved. 

M : {sparse matrix, dense matrix, LinearOperator} 

Preconditioner for A. The preconditioner should approximate the 

inverse of A. Effective preconditioning dramatically improves the 

rate of convergence, which implies that fewer iterations are needed 

to reach a given error tolerance. 

callback : function 

User-supplied function to call after each iteration. It is called 

as callback(xk), where xk is the current solution vector. 

 

""" 

 

 

def _stoptest(residual, atol): 

""" 

Successful termination condition for the solvers. 

""" 

resid = np.linalg.norm(residual) 

if resid <= atol: 

return resid, 1 

else: 

return resid, 0 

 

 

def _get_atol(tol, atol, bnrm2, get_residual, routine_name): 

""" 

Parse arguments for absolute tolerance in termination condition. 

 

Parameters 

---------- 

tol, atol : object 

The arguments passed into the solver routine by user. 

bnrm2 : float 

2-norm of the rhs vector. 

get_residual : callable 

Callable ``get_residual()`` that returns the initial value of 

the residual. 

routine_name : str 

Name of the routine. 

""" 

 

if atol is None: 

warnings.warn("scipy.sparse.linalg.{name} called without specifying `atol`. " 

"The default value will be changed in a future release. " 

"For compatibility, specify a value for `atol` explicitly, e.g., " 

"``{name}(..., atol=0)``, or to retain the old behavior " 

"``{name}(..., atol='legacy')``".format(name=routine_name), 

category=DeprecationWarning, stacklevel=4) 

atol = 'legacy' 

 

tol = float(tol) 

 

if atol == 'legacy': 

# emulate old legacy behavior 

resid = get_residual() 

if resid <= tol: 

return 'exit' 

if bnrm2 == 0: 

return tol 

else: 

return tol * float(bnrm2) 

else: 

return max(float(atol), tol * float(bnrm2)) 

 

 

def set_docstring(header, Ainfo, footer='', atol_default='0'): 

def combine(fn): 

fn.__doc__ = '\n'.join((header, common_doc1, 

' ' + Ainfo.replace('\n', '\n '), 

common_doc2, footer)) 

return fn 

return combine 

 

 

@set_docstring('Use BIConjugate Gradient iteration to solve ``Ax = b``.', 

'The real or complex N-by-N matrix of the linear system.\n' 

'It is required that the linear operator can produce\n' 

'``Ax`` and ``A^T x``.') 

@non_reentrant() 

def bicg(A, b, x0=None, tol=1e-5, maxiter=None, M=None, callback=None, atol=None): 

A,M,x,b,postprocess = make_system(A, M, x0, b) 

 

n = len(b) 

if maxiter is None: 

maxiter = n*10 

 

matvec, rmatvec = A.matvec, A.rmatvec 

psolve, rpsolve = M.matvec, M.rmatvec 

ltr = _type_conv[x.dtype.char] 

revcom = getattr(_iterative, ltr + 'bicgrevcom') 

 

get_residual = lambda: np.linalg.norm(matvec(x) - b) 

atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'bicg') 

if atol == 'exit': 

return postprocess(x), 0 

 

resid = atol 

ndx1 = 1 

ndx2 = -1 

# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1 

work = _aligned_zeros(6*n,dtype=x.dtype) 

ijob = 1 

info = 0 

ftflag = True 

iter_ = maxiter 

while True: 

olditer = iter_ 

x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \ 

revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob) 

if callback is not None and iter_ > olditer: 

callback(x) 

slice1 = slice(ndx1-1, ndx1-1+n) 

slice2 = slice(ndx2-1, ndx2-1+n) 

if (ijob == -1): 

if callback is not None: 

callback(x) 

break 

elif (ijob == 1): 

work[slice2] *= sclr2 

work[slice2] += sclr1*matvec(work[slice1]) 

elif (ijob == 2): 

work[slice2] *= sclr2 

work[slice2] += sclr1*rmatvec(work[slice1]) 

elif (ijob == 3): 

work[slice1] = psolve(work[slice2]) 

elif (ijob == 4): 

work[slice1] = rpsolve(work[slice2]) 

elif (ijob == 5): 

work[slice2] *= sclr2 

work[slice2] += sclr1*matvec(x) 

elif (ijob == 6): 

if ftflag: 

info = -1 

ftflag = False 

resid, info = _stoptest(work[slice1], atol) 

ijob = 2 

 

if info > 0 and iter_ == maxiter and not (resid <= atol): 

# info isn't set appropriately otherwise 

info = iter_ 

 

return postprocess(x), info 

 

 

@set_docstring('Use BIConjugate Gradient STABilized iteration to solve ' 

'``Ax = b``.', 

'The real or complex N-by-N matrix of the linear system.') 

@non_reentrant() 

def bicgstab(A, b, x0=None, tol=1e-5, maxiter=None, M=None, callback=None, atol=None): 

A, M, x, b, postprocess = make_system(A, M, x0, b) 

 

n = len(b) 

if maxiter is None: 

maxiter = n*10 

 

matvec = A.matvec 

psolve = M.matvec 

ltr = _type_conv[x.dtype.char] 

revcom = getattr(_iterative, ltr + 'bicgstabrevcom') 

 

get_residual = lambda: np.linalg.norm(matvec(x) - b) 

atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'bicgstab') 

if atol == 'exit': 

return postprocess(x), 0 

 

resid = atol 

ndx1 = 1 

ndx2 = -1 

# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1 

work = _aligned_zeros(7*n,dtype=x.dtype) 

ijob = 1 

info = 0 

ftflag = True 

iter_ = maxiter 

while True: 

olditer = iter_ 

x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \ 

revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob) 

if callback is not None and iter_ > olditer: 

callback(x) 

slice1 = slice(ndx1-1, ndx1-1+n) 

slice2 = slice(ndx2-1, ndx2-1+n) 

if (ijob == -1): 

if callback is not None: 

callback(x) 

break 

elif (ijob == 1): 

work[slice2] *= sclr2 

work[slice2] += sclr1*matvec(work[slice1]) 

elif (ijob == 2): 

work[slice1] = psolve(work[slice2]) 

elif (ijob == 3): 

work[slice2] *= sclr2 

work[slice2] += sclr1*matvec(x) 

elif (ijob == 4): 

if ftflag: 

info = -1 

ftflag = False 

resid, info = _stoptest(work[slice1], atol) 

ijob = 2 

 

if info > 0 and iter_ == maxiter and not (resid <= atol): 

# info isn't set appropriately otherwise 

info = iter_ 

 

return postprocess(x), info 

 

 

@set_docstring('Use Conjugate Gradient iteration to solve ``Ax = b``.', 

'The real or complex N-by-N matrix of the linear system.\n' 

'``A`` must represent a hermitian, positive definite matrix.') 

@non_reentrant() 

def cg(A, b, x0=None, tol=1e-5, maxiter=None, M=None, callback=None, atol=None): 

A, M, x, b, postprocess = make_system(A, M, x0, b) 

 

n = len(b) 

if maxiter is None: 

maxiter = n*10 

 

matvec = A.matvec 

psolve = M.matvec 

ltr = _type_conv[x.dtype.char] 

revcom = getattr(_iterative, ltr + 'cgrevcom') 

 

get_residual = lambda: np.linalg.norm(matvec(x) - b) 

atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'cg') 

if atol == 'exit': 

return postprocess(x), 0 

 

resid = atol 

ndx1 = 1 

ndx2 = -1 

# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1 

work = _aligned_zeros(4*n,dtype=x.dtype) 

ijob = 1 

info = 0 

ftflag = True 

iter_ = maxiter 

while True: 

olditer = iter_ 

x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \ 

revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob) 

if callback is not None and iter_ > olditer: 

callback(x) 

slice1 = slice(ndx1-1, ndx1-1+n) 

slice2 = slice(ndx2-1, ndx2-1+n) 

if (ijob == -1): 

if callback is not None: 

callback(x) 

break 

elif (ijob == 1): 

work[slice2] *= sclr2 

work[slice2] += sclr1*matvec(work[slice1]) 

elif (ijob == 2): 

work[slice1] = psolve(work[slice2]) 

elif (ijob == 3): 

work[slice2] *= sclr2 

work[slice2] += sclr1*matvec(x) 

elif (ijob == 4): 

if ftflag: 

info = -1 

ftflag = False 

resid, info = _stoptest(work[slice1], atol) 

if info == 1 and iter_ > 1: 

# recompute residual and recheck, to avoid 

# accumulating rounding error 

work[slice1] = b - matvec(x) 

resid, info = _stoptest(work[slice1], atol) 

ijob = 2 

 

if info > 0 and iter_ == maxiter and not (resid <= atol): 

# info isn't set appropriately otherwise 

info = iter_ 

 

return postprocess(x), info 

 

 

@set_docstring('Use Conjugate Gradient Squared iteration to solve ``Ax = b``.', 

'The real-valued N-by-N matrix of the linear system.') 

@non_reentrant() 

def cgs(A, b, x0=None, tol=1e-5, maxiter=None, M=None, callback=None, atol=None): 

A, M, x, b, postprocess = make_system(A, M, x0, b) 

 

n = len(b) 

if maxiter is None: 

maxiter = n*10 

 

matvec = A.matvec 

psolve = M.matvec 

ltr = _type_conv[x.dtype.char] 

revcom = getattr(_iterative, ltr + 'cgsrevcom') 

 

get_residual = lambda: np.linalg.norm(matvec(x) - b) 

atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'cgs') 

if atol == 'exit': 

return postprocess(x), 0 

 

resid = atol 

ndx1 = 1 

ndx2 = -1 

# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1 

work = _aligned_zeros(7*n,dtype=x.dtype) 

ijob = 1 

info = 0 

ftflag = True 

iter_ = maxiter 

while True: 

olditer = iter_ 

x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \ 

revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob) 

if callback is not None and iter_ > olditer: 

callback(x) 

slice1 = slice(ndx1-1, ndx1-1+n) 

slice2 = slice(ndx2-1, ndx2-1+n) 

if (ijob == -1): 

if callback is not None: 

callback(x) 

break 

elif (ijob == 1): 

work[slice2] *= sclr2 

work[slice2] += sclr1*matvec(work[slice1]) 

elif (ijob == 2): 

work[slice1] = psolve(work[slice2]) 

elif (ijob == 3): 

work[slice2] *= sclr2 

work[slice2] += sclr1*matvec(x) 

elif (ijob == 4): 

if ftflag: 

info = -1 

ftflag = False 

resid, info = _stoptest(work[slice1], atol) 

if info == 1 and iter_ > 1: 

# recompute residual and recheck, to avoid 

# accumulating rounding error 

work[slice1] = b - matvec(x) 

resid, info = _stoptest(work[slice1], atol) 

ijob = 2 

 

if info == -10: 

# termination due to breakdown: check for convergence 

resid, ok = _stoptest(b - matvec(x), atol) 

if ok: 

info = 0 

 

if info > 0 and iter_ == maxiter and not (resid <= atol): 

# info isn't set appropriately otherwise 

info = iter_ 

 

return postprocess(x), info 

 

 

@non_reentrant() 

def gmres(A, b, x0=None, tol=1e-5, restart=None, maxiter=None, M=None, callback=None, 

restrt=None, atol=None): 

""" 

Use Generalized Minimal RESidual iteration to solve ``Ax = b``. 

 

Parameters 

---------- 

A : {sparse matrix, dense matrix, LinearOperator} 

The real or complex N-by-N matrix of the linear system. 

b : {array, matrix} 

Right hand side of the linear system. Has shape (N,) or (N,1). 

 

Returns 

------- 

x : {array, matrix} 

The converged solution. 

info : int 

Provides convergence information: 

* 0 : successful exit 

* >0 : convergence to tolerance not achieved, number of iterations 

* <0 : illegal input or breakdown 

 

Other parameters 

---------------- 

x0 : {array, matrix} 

Starting guess for the solution (a vector of zeros by default). 

tol, atol : float, optional 

Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``. 

The default for ``atol`` is ``'legacy'``, which emulates 

a different legacy behavior. 

 

.. warning:: 

 

The default value for `atol` will be changed in a future release. 

For future compatibility, specify `atol` explicitly. 

restart : int, optional 

Number of iterations between restarts. Larger values increase 

iteration cost, but may be necessary for convergence. 

Default is 20. 

maxiter : int, optional 

Maximum number of iterations (restart cycles). Iteration will stop 

after maxiter steps even if the specified tolerance has not been 

achieved. 

M : {sparse matrix, dense matrix, LinearOperator} 

Inverse of the preconditioner of A. M should approximate the 

inverse of A and be easy to solve for (see Notes). Effective 

preconditioning dramatically improves the rate of convergence, 

which implies that fewer iterations are needed to reach a given 

error tolerance. By default, no preconditioner is used. 

callback : function 

User-supplied function to call after each iteration. It is called 

as callback(rk), where rk is the current residual vector. 

restrt : int, optional 

DEPRECATED - use `restart` instead. 

 

See Also 

-------- 

LinearOperator 

 

Notes 

----- 

A preconditioner, P, is chosen such that P is close to A but easy to solve 

for. The preconditioner parameter required by this routine is 

``M = P^-1``. The inverse should preferably not be calculated 

explicitly. Rather, use the following template to produce M:: 

 

# Construct a linear operator that computes P^-1 * x. 

import scipy.sparse.linalg as spla 

M_x = lambda x: spla.spsolve(P, x) 

M = spla.LinearOperator((n, n), M_x) 

 

Examples 

-------- 

>>> from scipy.sparse import csc_matrix 

>>> from scipy.sparse.linalg import gmres 

>>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float) 

>>> b = np.array([2, 4, -1], dtype=float) 

>>> x, exitCode = gmres(A, b) 

>>> print(exitCode) # 0 indicates successful convergence 

0 

>>> np.allclose(A.dot(x), b) 

True 

""" 

 

# Change 'restrt' keyword to 'restart' 

if restrt is None: 

restrt = restart 

elif restart is not None: 

raise ValueError("Cannot specify both restart and restrt keywords. " 

"Preferably use 'restart' only.") 

 

A, M, x, b,postprocess = make_system(A, M, x0, b) 

 

n = len(b) 

if maxiter is None: 

maxiter = n*10 

 

if restrt is None: 

restrt = 20 

restrt = min(restrt, n) 

 

matvec = A.matvec 

psolve = M.matvec 

ltr = _type_conv[x.dtype.char] 

revcom = getattr(_iterative, ltr + 'gmresrevcom') 

 

bnrm2 = np.linalg.norm(b) 

Mb_nrm2 = np.linalg.norm(psolve(b)) 

get_residual = lambda: np.linalg.norm(matvec(x) - b) 

atol = _get_atol(tol, atol, bnrm2, get_residual, 'gmres') 

if atol == 'exit': 

return postprocess(x), 0 

 

if bnrm2 == 0: 

return postprocess(b), 0 

 

# Tolerance passed to GMRESREVCOM applies to the inner iteration 

# and deals with the left-preconditioned residual. 

ptol_max_factor = 1.0 

ptol = Mb_nrm2 * min(ptol_max_factor, atol / bnrm2) 

resid = np.nan 

presid = np.nan 

ndx1 = 1 

ndx2 = -1 

# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1 

work = _aligned_zeros((6+restrt)*n,dtype=x.dtype) 

work2 = _aligned_zeros((restrt+1)*(2*restrt+2),dtype=x.dtype) 

ijob = 1 

info = 0 

ftflag = True 

iter_ = maxiter 

old_ijob = ijob 

first_pass = True 

resid_ready = False 

iter_num = 1 

while True: 

x, iter_, presid, info, ndx1, ndx2, sclr1, sclr2, ijob = \ 

revcom(b, x, restrt, work, work2, iter_, presid, info, ndx1, ndx2, ijob, ptol) 

slice1 = slice(ndx1-1, ndx1-1+n) 

slice2 = slice(ndx2-1, ndx2-1+n) 

if (ijob == -1): # gmres success, update last residual 

if resid_ready and callback is not None: 

callback(presid / bnrm2) 

resid_ready = False 

break 

elif (ijob == 1): 

work[slice2] *= sclr2 

work[slice2] += sclr1*matvec(x) 

elif (ijob == 2): 

work[slice1] = psolve(work[slice2]) 

if not first_pass and old_ijob == 3: 

resid_ready = True 

 

first_pass = False 

elif (ijob == 3): 

work[slice2] *= sclr2 

work[slice2] += sclr1*matvec(work[slice1]) 

if resid_ready and callback is not None: 

callback(presid / bnrm2) 

resid_ready = False 

iter_num = iter_num+1 

 

elif (ijob == 4): 

if ftflag: 

info = -1 

ftflag = False 

resid, info = _stoptest(work[slice1], atol) 

 

# Inner loop tolerance control 

if info or presid > ptol: 

ptol_max_factor = min(1.0, 1.5 * ptol_max_factor) 

else: 

# Inner loop tolerance OK, but outer loop not. 

ptol_max_factor = max(1e-16, 0.25 * ptol_max_factor) 

 

if resid != 0: 

ptol = presid * min(ptol_max_factor, atol / resid) 

else: 

ptol = presid * ptol_max_factor 

 

old_ijob = ijob 

ijob = 2 

 

if iter_num > maxiter: 

info = maxiter 

break 

 

if info >= 0 and not (resid <= atol): 

# info isn't set appropriately otherwise 

info = maxiter 

 

return postprocess(x), info 

 

 

@non_reentrant() 

def qmr(A, b, x0=None, tol=1e-5, maxiter=None, M1=None, M2=None, callback=None, 

atol=None): 

"""Use Quasi-Minimal Residual iteration to solve ``Ax = b``. 

 

Parameters 

---------- 

A : {sparse matrix, dense matrix, LinearOperator} 

The real-valued N-by-N matrix of the linear system. 

It is required that the linear operator can produce 

``Ax`` and ``A^T x``. 

b : {array, matrix} 

Right hand side of the linear system. Has shape (N,) or (N,1). 

 

Returns 

------- 

x : {array, matrix} 

The converged solution. 

info : integer 

Provides convergence information: 

0 : successful exit 

>0 : convergence to tolerance not achieved, number of iterations 

<0 : illegal input or breakdown 

 

Other Parameters 

---------------- 

x0 : {array, matrix} 

Starting guess for the solution. 

tol, atol : float, optional 

Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``. 

The default for ``atol`` is ``'legacy'``, which emulates 

a different legacy behavior. 

 

.. warning:: 

 

The default value for `atol` will be changed in a future release. 

For future compatibility, specify `atol` explicitly. 

maxiter : integer 

Maximum number of iterations. Iteration will stop after maxiter 

steps even if the specified tolerance has not been achieved. 

M1 : {sparse matrix, dense matrix, LinearOperator} 

Left preconditioner for A. 

M2 : {sparse matrix, dense matrix, LinearOperator} 

Right preconditioner for A. Used together with the left 

preconditioner M1. The matrix M1*A*M2 should have better 

conditioned than A alone. 

callback : function 

User-supplied function to call after each iteration. It is called 

as callback(xk), where xk is the current solution vector. 

 

See Also 

-------- 

LinearOperator 

 

Examples 

-------- 

>>> from scipy.sparse import csc_matrix 

>>> from scipy.sparse.linalg import qmr 

>>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float) 

>>> b = np.array([2, 4, -1], dtype=float) 

>>> x, exitCode = qmr(A, b) 

>>> print(exitCode) # 0 indicates successful convergence 

0 

>>> np.allclose(A.dot(x), b) 

True 

""" 

A_ = A 

A, M, x, b, postprocess = make_system(A, None, x0, b) 

 

if M1 is None and M2 is None: 

if hasattr(A_,'psolve'): 

def left_psolve(b): 

return A_.psolve(b,'left') 

 

def right_psolve(b): 

return A_.psolve(b,'right') 

 

def left_rpsolve(b): 

return A_.rpsolve(b,'left') 

 

def right_rpsolve(b): 

return A_.rpsolve(b,'right') 

M1 = LinearOperator(A.shape, matvec=left_psolve, rmatvec=left_rpsolve) 

M2 = LinearOperator(A.shape, matvec=right_psolve, rmatvec=right_rpsolve) 

else: 

def id(b): 

return b 

M1 = LinearOperator(A.shape, matvec=id, rmatvec=id) 

M2 = LinearOperator(A.shape, matvec=id, rmatvec=id) 

 

n = len(b) 

if maxiter is None: 

maxiter = n*10 

 

ltr = _type_conv[x.dtype.char] 

revcom = getattr(_iterative, ltr + 'qmrrevcom') 

 

get_residual = lambda: np.linalg.norm(A.matvec(x) - b) 

atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'qmr') 

if atol == 'exit': 

return postprocess(x), 0 

 

resid = atol 

ndx1 = 1 

ndx2 = -1 

# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1 

work = _aligned_zeros(11*n,x.dtype) 

ijob = 1 

info = 0 

ftflag = True 

iter_ = maxiter 

while True: 

olditer = iter_ 

x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \ 

revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob) 

if callback is not None and iter_ > olditer: 

callback(x) 

slice1 = slice(ndx1-1, ndx1-1+n) 

slice2 = slice(ndx2-1, ndx2-1+n) 

if (ijob == -1): 

if callback is not None: 

callback(x) 

break 

elif (ijob == 1): 

work[slice2] *= sclr2 

work[slice2] += sclr1*A.matvec(work[slice1]) 

elif (ijob == 2): 

work[slice2] *= sclr2 

work[slice2] += sclr1*A.rmatvec(work[slice1]) 

elif (ijob == 3): 

work[slice1] = M1.matvec(work[slice2]) 

elif (ijob == 4): 

work[slice1] = M2.matvec(work[slice2]) 

elif (ijob == 5): 

work[slice1] = M1.rmatvec(work[slice2]) 

elif (ijob == 6): 

work[slice1] = M2.rmatvec(work[slice2]) 

elif (ijob == 7): 

work[slice2] *= sclr2 

work[slice2] += sclr1*A.matvec(x) 

elif (ijob == 8): 

if ftflag: 

info = -1 

ftflag = False 

resid, info = _stoptest(work[slice1], atol) 

ijob = 2 

 

if info > 0 and iter_ == maxiter and not (resid <= atol): 

# info isn't set appropriately otherwise 

info = iter_ 

 

return postprocess(x), info