1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

from __future__ import division, print_function, absolute_import 

 

from numpy import sqrt, inner, finfo, zeros 

from numpy.linalg import norm 

 

from .utils import make_system 

 

__all__ = ['minres'] 

 

 

def minres(A, b, x0=None, shift=0.0, tol=1e-5, maxiter=None, 

M=None, callback=None, show=False, check=False): 

""" 

Use MINimum RESidual iteration to solve Ax=b 

 

MINRES minimizes norm(A*x - b) for a real symmetric matrix A. Unlike 

the Conjugate Gradient method, A can be indefinite or singular. 

 

If shift != 0 then the method solves (A - shift*I)x = b 

 

Parameters 

---------- 

A : {sparse matrix, dense matrix, LinearOperator} 

The real symmetric N-by-N matrix of the linear system 

b : {array, matrix} 

Right hand side of the linear system. Has shape (N,) or (N,1). 

 

Returns 

------- 

x : {array, matrix} 

The converged solution. 

info : integer 

Provides convergence information: 

0 : successful exit 

>0 : convergence to tolerance not achieved, number of iterations 

<0 : illegal input or breakdown 

 

Other Parameters 

---------------- 

x0 : {array, matrix} 

Starting guess for the solution. 

tol : float 

Tolerance to achieve. The algorithm terminates when the relative 

residual is below `tol`. 

maxiter : integer 

Maximum number of iterations. Iteration will stop after maxiter 

steps even if the specified tolerance has not been achieved. 

M : {sparse matrix, dense matrix, LinearOperator} 

Preconditioner for A. The preconditioner should approximate the 

inverse of A. Effective preconditioning dramatically improves the 

rate of convergence, which implies that fewer iterations are needed 

to reach a given error tolerance. 

callback : function 

User-supplied function to call after each iteration. It is called 

as callback(xk), where xk is the current solution vector. 

 

References 

---------- 

Solution of sparse indefinite systems of linear equations, 

C. C. Paige and M. A. Saunders (1975), 

SIAM J. Numer. Anal. 12(4), pp. 617-629. 

https://web.stanford.edu/group/SOL/software/minres/ 

 

This file is a translation of the following MATLAB implementation: 

https://web.stanford.edu/group/SOL/software/minres/minres-matlab.zip 

 

""" 

A, M, x, b, postprocess = make_system(A, M, x0, b) 

 

matvec = A.matvec 

psolve = M.matvec 

 

first = 'Enter minres. ' 

last = 'Exit minres. ' 

 

n = A.shape[0] 

 

if maxiter is None: 

maxiter = 5 * n 

 

msg = [' beta2 = 0. If M = I, b and x are eigenvectors ', # -1 

' beta1 = 0. The exact solution is x = 0 ', # 0 

' A solution to Ax = b was found, given rtol ', # 1 

' A least-squares solution was found, given rtol ', # 2 

' Reasonable accuracy achieved, given eps ', # 3 

' x has converged to an eigenvector ', # 4 

' acond has exceeded 0.1/eps ', # 5 

' The iteration limit was reached ', # 6 

' A does not define a symmetric matrix ', # 7 

' M does not define a symmetric matrix ', # 8 

' M does not define a pos-def preconditioner '] # 9 

 

if show: 

print(first + 'Solution of symmetric Ax = b') 

print(first + 'n = %3g shift = %23.14e' % (n,shift)) 

print(first + 'itnlim = %3g rtol = %11.2e' % (maxiter,tol)) 

print() 

 

istop = 0 

itn = 0 

Anorm = 0 

Acond = 0 

rnorm = 0 

ynorm = 0 

 

xtype = x.dtype 

 

eps = finfo(xtype).eps 

 

x = zeros(n, dtype=xtype) 

 

# Set up y and v for the first Lanczos vector v1. 

# y = beta1 P' v1, where P = C**(-1). 

# v is really P' v1. 

 

y = b 

r1 = b 

 

y = psolve(b) 

 

beta1 = inner(b,y) 

 

if beta1 < 0: 

raise ValueError('indefinite preconditioner') 

elif beta1 == 0: 

return (postprocess(x), 0) 

 

beta1 = sqrt(beta1) 

 

if check: 

# are these too strict? 

 

# see if A is symmetric 

w = matvec(y) 

r2 = matvec(w) 

s = inner(w,w) 

t = inner(y,r2) 

z = abs(s - t) 

epsa = (s + eps) * eps**(1.0/3.0) 

if z > epsa: 

raise ValueError('non-symmetric matrix') 

 

# see if M is symmetric 

r2 = psolve(y) 

s = inner(y,y) 

t = inner(r1,r2) 

z = abs(s - t) 

epsa = (s + eps) * eps**(1.0/3.0) 

if z > epsa: 

raise ValueError('non-symmetric preconditioner') 

 

# Initialize other quantities 

oldb = 0 

beta = beta1 

dbar = 0 

epsln = 0 

qrnorm = beta1 

phibar = beta1 

rhs1 = beta1 

rhs2 = 0 

tnorm2 = 0 

ynorm2 = 0 

cs = -1 

sn = 0 

w = zeros(n, dtype=xtype) 

w2 = zeros(n, dtype=xtype) 

r2 = r1 

 

if show: 

print() 

print() 

print(' Itn x(1) Compatible LS norm(A) cond(A) gbar/|A|') 

 

while itn < maxiter: 

itn += 1 

 

s = 1.0/beta 

v = s*y 

 

y = matvec(v) 

y = y - shift * v 

 

if itn >= 2: 

y = y - (beta/oldb)*r1 

 

alfa = inner(v,y) 

y = y - (alfa/beta)*r2 

r1 = r2 

r2 = y 

y = psolve(r2) 

oldb = beta 

beta = inner(r2,y) 

if beta < 0: 

raise ValueError('non-symmetric matrix') 

beta = sqrt(beta) 

tnorm2 += alfa**2 + oldb**2 + beta**2 

 

if itn == 1: 

if beta/beta1 <= 10*eps: 

istop = -1 # Terminate later 

# tnorm2 = alfa**2 ?? 

gmax = abs(alfa) 

gmin = gmax 

 

# Apply previous rotation Qk-1 to get 

# [deltak epslnk+1] = [cs sn][dbark 0 ] 

# [gbar k dbar k+1] [sn -cs][alfak betak+1]. 

 

oldeps = epsln 

delta = cs * dbar + sn * alfa # delta1 = 0 deltak 

gbar = sn * dbar - cs * alfa # gbar 1 = alfa1 gbar k 

epsln = sn * beta # epsln2 = 0 epslnk+1 

dbar = - cs * beta # dbar 2 = beta2 dbar k+1 

root = norm([gbar, dbar]) 

Arnorm = phibar * root 

 

# Compute the next plane rotation Qk 

 

gamma = norm([gbar, beta]) # gammak 

gamma = max(gamma, eps) 

cs = gbar / gamma # ck 

sn = beta / gamma # sk 

phi = cs * phibar # phik 

phibar = sn * phibar # phibark+1 

 

# Update x. 

 

denom = 1.0/gamma 

w1 = w2 

w2 = w 

w = (v - oldeps*w1 - delta*w2) * denom 

x = x + phi*w 

 

# Go round again. 

 

gmax = max(gmax, gamma) 

gmin = min(gmin, gamma) 

z = rhs1 / gamma 

ynorm2 = z**2 + ynorm2 

rhs1 = rhs2 - delta*z 

rhs2 = - epsln*z 

 

# Estimate various norms and test for convergence. 

 

Anorm = sqrt(tnorm2) 

ynorm = sqrt(ynorm2) 

epsa = Anorm * eps 

epsx = Anorm * ynorm * eps 

epsr = Anorm * ynorm * tol 

diag = gbar 

 

if diag == 0: 

diag = epsa 

 

qrnorm = phibar 

rnorm = qrnorm 

test1 = rnorm / (Anorm*ynorm) # ||r|| / (||A|| ||x||) 

test2 = root / Anorm # ||Ar|| / (||A|| ||r||) 

 

# Estimate cond(A). 

# In this version we look at the diagonals of R in the 

# factorization of the lower Hessenberg matrix, Q * H = R, 

# where H is the tridiagonal matrix from Lanczos with one 

# extra row, beta(k+1) e_k^T. 

 

Acond = gmax/gmin 

 

# See if any of the stopping criteria are satisfied. 

# In rare cases, istop is already -1 from above (Abar = const*I). 

 

if istop == 0: 

t1 = 1 + test1 # These tests work if tol < eps 

t2 = 1 + test2 

if t2 <= 1: 

istop = 2 

if t1 <= 1: 

istop = 1 

 

if itn >= maxiter: 

istop = 6 

if Acond >= 0.1/eps: 

istop = 4 

if epsx >= beta: 

istop = 3 

# if rnorm <= epsx : istop = 2 

# if rnorm <= epsr : istop = 1 

if test2 <= tol: 

istop = 2 

if test1 <= tol: 

istop = 1 

 

# See if it is time to print something. 

 

prnt = False 

if n <= 40: 

prnt = True 

if itn <= 10: 

prnt = True 

if itn >= maxiter-10: 

prnt = True 

if itn % 10 == 0: 

prnt = True 

if qrnorm <= 10*epsx: 

prnt = True 

if qrnorm <= 10*epsr: 

prnt = True 

if Acond <= 1e-2/eps: 

prnt = True 

if istop != 0: 

prnt = True 

 

if show and prnt: 

str1 = '%6g %12.5e %10.3e' % (itn, x[0], test1) 

str2 = ' %10.3e' % (test2,) 

str3 = ' %8.1e %8.1e %8.1e' % (Anorm, Acond, gbar/Anorm) 

 

print(str1 + str2 + str3) 

 

if itn % 10 == 0: 

print() 

 

if callback is not None: 

callback(x) 

 

if istop != 0: 

break # TODO check this 

 

if show: 

print() 

print(last + ' istop = %3g itn =%5g' % (istop,itn)) 

print(last + ' Anorm = %12.4e Acond = %12.4e' % (Anorm,Acond)) 

print(last + ' rnorm = %12.4e ynorm = %12.4e' % (rnorm,ynorm)) 

print(last + ' Arnorm = %12.4e' % (Arnorm,)) 

print(last + msg[istop+1]) 

 

if istop == 6: 

info = maxiter 

else: 

info = 0 

 

return (postprocess(x),info) 

 

 

if __name__ == '__main__': 

from scipy import ones, arange 

from scipy.linalg import norm 

from scipy.sparse import spdiags 

 

n = 10 

 

residuals = [] 

 

def cb(x): 

residuals.append(norm(b - A*x)) 

 

# A = poisson((10,),format='csr') 

A = spdiags([arange(1,n+1,dtype=float)], [0], n, n, format='csr') 

M = spdiags([1.0/arange(1,n+1,dtype=float)], [0], n, n, format='csr') 

A.psolve = M.matvec 

b = 0*ones(A.shape[0]) 

x = minres(A,b,tol=1e-12,maxiter=None,callback=cb) 

# x = cg(A,b,x0=b,tol=1e-12,maxiter=None,callback=cb)[0]