1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

""" 

Sparse matrix functions 

""" 

 

# 

# Authors: Travis Oliphant, March 2002 

# Anthony Scopatz, August 2012 (Sparse Updates) 

# Jake Vanderplas, August 2012 (Sparse Updates) 

# 

 

from __future__ import division, print_function, absolute_import 

 

__all__ = ['expm', 'inv'] 

 

import math 

 

import numpy as np 

 

import scipy.special 

from scipy.linalg.basic import solve, solve_triangular 

 

from scipy.sparse.base import isspmatrix 

from scipy.sparse.construct import eye as speye 

from scipy.sparse.linalg import spsolve 

 

import scipy.sparse 

import scipy.sparse.linalg 

from scipy.sparse.linalg.interface import LinearOperator 

 

 

UPPER_TRIANGULAR = 'upper_triangular' 

 

 

def inv(A): 

""" 

Compute the inverse of a sparse matrix 

 

Parameters 

---------- 

A : (M,M) ndarray or sparse matrix 

square matrix to be inverted 

 

Returns 

------- 

Ainv : (M,M) ndarray or sparse matrix 

inverse of `A` 

 

Notes 

----- 

This computes the sparse inverse of `A`. If the inverse of `A` is expected 

to be non-sparse, it will likely be faster to convert `A` to dense and use 

scipy.linalg.inv. 

 

Examples 

-------- 

>>> from scipy.sparse import csc_matrix 

>>> from scipy.sparse.linalg import inv 

>>> A = csc_matrix([[1., 0.], [1., 2.]]) 

>>> Ainv = inv(A) 

>>> Ainv 

<2x2 sparse matrix of type '<class 'numpy.float64'>' 

with 3 stored elements in Compressed Sparse Column format> 

>>> A.dot(Ainv) 

<2x2 sparse matrix of type '<class 'numpy.float64'>' 

with 2 stored elements in Compressed Sparse Column format> 

>>> A.dot(Ainv).todense() 

matrix([[ 1., 0.], 

[ 0., 1.]]) 

 

.. versionadded:: 0.12.0 

 

""" 

#check input 

if not scipy.sparse.isspmatrix(A): 

raise TypeError('Input must be a sparse matrix') 

 

I = speye(A.shape[0], A.shape[1], dtype=A.dtype, format=A.format) 

Ainv = spsolve(A, I) 

return Ainv 

 

 

def _onenorm_matrix_power_nnm(A, p): 

""" 

Compute the 1-norm of a non-negative integer power of a non-negative matrix. 

 

Parameters 

---------- 

A : a square ndarray or matrix or sparse matrix 

Input matrix with non-negative entries. 

p : non-negative integer 

The power to which the matrix is to be raised. 

 

Returns 

------- 

out : float 

The 1-norm of the matrix power p of A. 

 

""" 

# check input 

if int(p) != p or p < 0: 

raise ValueError('expected non-negative integer p') 

p = int(p) 

if len(A.shape) != 2 or A.shape[0] != A.shape[1]: 

raise ValueError('expected A to be like a square matrix') 

 

# Explicitly make a column vector so that this works when A is a 

# numpy matrix (in addition to ndarray and sparse matrix). 

v = np.ones((A.shape[0], 1), dtype=float) 

M = A.T 

for i in range(p): 

v = M.dot(v) 

return np.max(v) 

 

 

def _onenorm(A): 

# A compatibility function which should eventually disappear. 

# This is copypasted from expm_action. 

if scipy.sparse.isspmatrix(A): 

return max(abs(A).sum(axis=0).flat) 

else: 

return np.linalg.norm(A, 1) 

 

 

def _ident_like(A): 

# A compatibility function which should eventually disappear. 

# This is copypasted from expm_action. 

if scipy.sparse.isspmatrix(A): 

return scipy.sparse.construct.eye(A.shape[0], A.shape[1], 

dtype=A.dtype, format=A.format) 

else: 

return np.eye(A.shape[0], A.shape[1], dtype=A.dtype) 

 

 

def _is_upper_triangular(A): 

# This function could possibly be of wider interest. 

if isspmatrix(A): 

lower_part = scipy.sparse.tril(A, -1) 

# Check structural upper triangularity, 

# then coincidental upper triangularity if needed. 

return lower_part.nnz == 0 or lower_part.count_nonzero() == 0 

else: 

return not np.tril(A, -1).any() 

 

 

def _smart_matrix_product(A, B, alpha=None, structure=None): 

""" 

A matrix product that knows about sparse and structured matrices. 

 

Parameters 

---------- 

A : 2d ndarray 

First matrix. 

B : 2d ndarray 

Second matrix. 

alpha : float 

The matrix product will be scaled by this constant. 

structure : str, optional 

A string describing the structure of both matrices `A` and `B`. 

Only `upper_triangular` is currently supported. 

 

Returns 

------- 

M : 2d ndarray 

Matrix product of A and B. 

 

""" 

if len(A.shape) != 2: 

raise ValueError('expected A to be a rectangular matrix') 

if len(B.shape) != 2: 

raise ValueError('expected B to be a rectangular matrix') 

f = None 

if structure == UPPER_TRIANGULAR: 

if not isspmatrix(A) and not isspmatrix(B): 

f, = scipy.linalg.get_blas_funcs(('trmm',), (A, B)) 

if f is not None: 

if alpha is None: 

alpha = 1. 

out = f(alpha, A, B) 

else: 

if alpha is None: 

out = A.dot(B) 

else: 

out = alpha * A.dot(B) 

return out 

 

 

class MatrixPowerOperator(LinearOperator): 

 

def __init__(self, A, p, structure=None): 

if A.ndim != 2 or A.shape[0] != A.shape[1]: 

raise ValueError('expected A to be like a square matrix') 

if p < 0: 

raise ValueError('expected p to be a non-negative integer') 

self._A = A 

self._p = p 

self._structure = structure 

self.dtype = A.dtype 

self.ndim = A.ndim 

self.shape = A.shape 

 

def _matvec(self, x): 

for i in range(self._p): 

x = self._A.dot(x) 

return x 

 

def _rmatvec(self, x): 

A_T = self._A.T 

x = x.ravel() 

for i in range(self._p): 

x = A_T.dot(x) 

return x 

 

def _matmat(self, X): 

for i in range(self._p): 

X = _smart_matrix_product(self._A, X, structure=self._structure) 

return X 

 

@property 

def T(self): 

return MatrixPowerOperator(self._A.T, self._p) 

 

 

class ProductOperator(LinearOperator): 

""" 

For now, this is limited to products of multiple square matrices. 

""" 

 

def __init__(self, *args, **kwargs): 

self._structure = kwargs.get('structure', None) 

for A in args: 

if len(A.shape) != 2 or A.shape[0] != A.shape[1]: 

raise ValueError( 

'For now, the ProductOperator implementation is ' 

'limited to the product of multiple square matrices.') 

if args: 

n = args[0].shape[0] 

for A in args: 

for d in A.shape: 

if d != n: 

raise ValueError( 

'The square matrices of the ProductOperator ' 

'must all have the same shape.') 

self.shape = (n, n) 

self.ndim = len(self.shape) 

self.dtype = np.find_common_type([x.dtype for x in args], []) 

self._operator_sequence = args 

 

def _matvec(self, x): 

for A in reversed(self._operator_sequence): 

x = A.dot(x) 

return x 

 

def _rmatvec(self, x): 

x = x.ravel() 

for A in self._operator_sequence: 

x = A.T.dot(x) 

return x 

 

def _matmat(self, X): 

for A in reversed(self._operator_sequence): 

X = _smart_matrix_product(A, X, structure=self._structure) 

return X 

 

@property 

def T(self): 

T_args = [A.T for A in reversed(self._operator_sequence)] 

return ProductOperator(*T_args) 

 

 

def _onenormest_matrix_power(A, p, 

t=2, itmax=5, compute_v=False, compute_w=False, structure=None): 

""" 

Efficiently estimate the 1-norm of A^p. 

 

Parameters 

---------- 

A : ndarray 

Matrix whose 1-norm of a power is to be computed. 

p : int 

Non-negative integer power. 

t : int, optional 

A positive parameter controlling the tradeoff between 

accuracy versus time and memory usage. 

Larger values take longer and use more memory 

but give more accurate output. 

itmax : int, optional 

Use at most this many iterations. 

compute_v : bool, optional 

Request a norm-maximizing linear operator input vector if True. 

compute_w : bool, optional 

Request a norm-maximizing linear operator output vector if True. 

 

Returns 

------- 

est : float 

An underestimate of the 1-norm of the sparse matrix. 

v : ndarray, optional 

The vector such that ||Av||_1 == est*||v||_1. 

It can be thought of as an input to the linear operator 

that gives an output with particularly large norm. 

w : ndarray, optional 

The vector Av which has relatively large 1-norm. 

It can be thought of as an output of the linear operator 

that is relatively large in norm compared to the input. 

 

""" 

return scipy.sparse.linalg.onenormest( 

MatrixPowerOperator(A, p, structure=structure)) 

 

 

def _onenormest_product(operator_seq, 

t=2, itmax=5, compute_v=False, compute_w=False, structure=None): 

""" 

Efficiently estimate the 1-norm of the matrix product of the args. 

 

Parameters 

---------- 

operator_seq : linear operator sequence 

Matrices whose 1-norm of product is to be computed. 

t : int, optional 

A positive parameter controlling the tradeoff between 

accuracy versus time and memory usage. 

Larger values take longer and use more memory 

but give more accurate output. 

itmax : int, optional 

Use at most this many iterations. 

compute_v : bool, optional 

Request a norm-maximizing linear operator input vector if True. 

compute_w : bool, optional 

Request a norm-maximizing linear operator output vector if True. 

structure : str, optional 

A string describing the structure of all operators. 

Only `upper_triangular` is currently supported. 

 

Returns 

------- 

est : float 

An underestimate of the 1-norm of the sparse matrix. 

v : ndarray, optional 

The vector such that ||Av||_1 == est*||v||_1. 

It can be thought of as an input to the linear operator 

that gives an output with particularly large norm. 

w : ndarray, optional 

The vector Av which has relatively large 1-norm. 

It can be thought of as an output of the linear operator 

that is relatively large in norm compared to the input. 

 

""" 

return scipy.sparse.linalg.onenormest( 

ProductOperator(*operator_seq, structure=structure)) 

 

 

class _ExpmPadeHelper(object): 

""" 

Help lazily evaluate a matrix exponential. 

 

The idea is to not do more work than we need for high expm precision, 

so we lazily compute matrix powers and store or precompute 

other properties of the matrix. 

 

""" 

def __init__(self, A, structure=None, use_exact_onenorm=False): 

""" 

Initialize the object. 

 

Parameters 

---------- 

A : a dense or sparse square numpy matrix or ndarray 

The matrix to be exponentiated. 

structure : str, optional 

A string describing the structure of matrix `A`. 

Only `upper_triangular` is currently supported. 

use_exact_onenorm : bool, optional 

If True then only the exact one-norm of matrix powers and products 

will be used. Otherwise, the one-norm of powers and products 

may initially be estimated. 

""" 

self.A = A 

self._A2 = None 

self._A4 = None 

self._A6 = None 

self._A8 = None 

self._A10 = None 

self._d4_exact = None 

self._d6_exact = None 

self._d8_exact = None 

self._d10_exact = None 

self._d4_approx = None 

self._d6_approx = None 

self._d8_approx = None 

self._d10_approx = None 

self.ident = _ident_like(A) 

self.structure = structure 

self.use_exact_onenorm = use_exact_onenorm 

 

@property 

def A2(self): 

if self._A2 is None: 

self._A2 = _smart_matrix_product( 

self.A, self.A, structure=self.structure) 

return self._A2 

 

@property 

def A4(self): 

if self._A4 is None: 

self._A4 = _smart_matrix_product( 

self.A2, self.A2, structure=self.structure) 

return self._A4 

 

@property 

def A6(self): 

if self._A6 is None: 

self._A6 = _smart_matrix_product( 

self.A4, self.A2, structure=self.structure) 

return self._A6 

 

@property 

def A8(self): 

if self._A8 is None: 

self._A8 = _smart_matrix_product( 

self.A6, self.A2, structure=self.structure) 

return self._A8 

 

@property 

def A10(self): 

if self._A10 is None: 

self._A10 = _smart_matrix_product( 

self.A4, self.A6, structure=self.structure) 

return self._A10 

 

@property 

def d4_tight(self): 

if self._d4_exact is None: 

self._d4_exact = _onenorm(self.A4)**(1/4.) 

return self._d4_exact 

 

@property 

def d6_tight(self): 

if self._d6_exact is None: 

self._d6_exact = _onenorm(self.A6)**(1/6.) 

return self._d6_exact 

 

@property 

def d8_tight(self): 

if self._d8_exact is None: 

self._d8_exact = _onenorm(self.A8)**(1/8.) 

return self._d8_exact 

 

@property 

def d10_tight(self): 

if self._d10_exact is None: 

self._d10_exact = _onenorm(self.A10)**(1/10.) 

return self._d10_exact 

 

@property 

def d4_loose(self): 

if self.use_exact_onenorm: 

return self.d4_tight 

if self._d4_exact is not None: 

return self._d4_exact 

else: 

if self._d4_approx is None: 

self._d4_approx = _onenormest_matrix_power(self.A2, 2, 

structure=self.structure)**(1/4.) 

return self._d4_approx 

 

@property 

def d6_loose(self): 

if self.use_exact_onenorm: 

return self.d6_tight 

if self._d6_exact is not None: 

return self._d6_exact 

else: 

if self._d6_approx is None: 

self._d6_approx = _onenormest_matrix_power(self.A2, 3, 

structure=self.structure)**(1/6.) 

return self._d6_approx 

 

@property 

def d8_loose(self): 

if self.use_exact_onenorm: 

return self.d8_tight 

if self._d8_exact is not None: 

return self._d8_exact 

else: 

if self._d8_approx is None: 

self._d8_approx = _onenormest_matrix_power(self.A4, 2, 

structure=self.structure)**(1/8.) 

return self._d8_approx 

 

@property 

def d10_loose(self): 

if self.use_exact_onenorm: 

return self.d10_tight 

if self._d10_exact is not None: 

return self._d10_exact 

else: 

if self._d10_approx is None: 

self._d10_approx = _onenormest_product((self.A4, self.A6), 

structure=self.structure)**(1/10.) 

return self._d10_approx 

 

def pade3(self): 

b = (120., 60., 12., 1.) 

U = _smart_matrix_product(self.A, 

b[3]*self.A2 + b[1]*self.ident, 

structure=self.structure) 

V = b[2]*self.A2 + b[0]*self.ident 

return U, V 

 

def pade5(self): 

b = (30240., 15120., 3360., 420., 30., 1.) 

U = _smart_matrix_product(self.A, 

b[5]*self.A4 + b[3]*self.A2 + b[1]*self.ident, 

structure=self.structure) 

V = b[4]*self.A4 + b[2]*self.A2 + b[0]*self.ident 

return U, V 

 

def pade7(self): 

b = (17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.) 

U = _smart_matrix_product(self.A, 

b[7]*self.A6 + b[5]*self.A4 + b[3]*self.A2 + b[1]*self.ident, 

structure=self.structure) 

V = b[6]*self.A6 + b[4]*self.A4 + b[2]*self.A2 + b[0]*self.ident 

return U, V 

 

def pade9(self): 

b = (17643225600., 8821612800., 2075673600., 302702400., 30270240., 

2162160., 110880., 3960., 90., 1.) 

U = _smart_matrix_product(self.A, 

(b[9]*self.A8 + b[7]*self.A6 + b[5]*self.A4 + 

b[3]*self.A2 + b[1]*self.ident), 

structure=self.structure) 

V = (b[8]*self.A8 + b[6]*self.A6 + b[4]*self.A4 + 

b[2]*self.A2 + b[0]*self.ident) 

return U, V 

 

def pade13_scaled(self, s): 

b = (64764752532480000., 32382376266240000., 7771770303897600., 

1187353796428800., 129060195264000., 10559470521600., 

670442572800., 33522128640., 1323241920., 40840800., 960960., 

16380., 182., 1.) 

B = self.A * 2**-s 

B2 = self.A2 * 2**(-2*s) 

B4 = self.A4 * 2**(-4*s) 

B6 = self.A6 * 2**(-6*s) 

U2 = _smart_matrix_product(B6, 

b[13]*B6 + b[11]*B4 + b[9]*B2, 

structure=self.structure) 

U = _smart_matrix_product(B, 

(U2 + b[7]*B6 + b[5]*B4 + 

b[3]*B2 + b[1]*self.ident), 

structure=self.structure) 

V2 = _smart_matrix_product(B6, 

b[12]*B6 + b[10]*B4 + b[8]*B2, 

structure=self.structure) 

V = V2 + b[6]*B6 + b[4]*B4 + b[2]*B2 + b[0]*self.ident 

return U, V 

 

 

def expm(A): 

""" 

Compute the matrix exponential using Pade approximation. 

 

Parameters 

---------- 

A : (M,M) array_like or sparse matrix 

2D Array or Matrix (sparse or dense) to be exponentiated 

 

Returns 

------- 

expA : (M,M) ndarray 

Matrix exponential of `A` 

 

Notes 

----- 

This is algorithm (6.1) which is a simplification of algorithm (5.1). 

 

.. versionadded:: 0.12.0 

 

References 

---------- 

.. [1] Awad H. Al-Mohy and Nicholas J. Higham (2009) 

"A New Scaling and Squaring Algorithm for the Matrix Exponential." 

SIAM Journal on Matrix Analysis and Applications. 

31 (3). pp. 970-989. ISSN 1095-7162 

 

Examples 

-------- 

>>> from scipy.sparse import csc_matrix 

>>> from scipy.sparse.linalg import expm 

>>> A = csc_matrix([[1, 0, 0], [0, 2, 0], [0, 0, 3]]) 

>>> A.todense() 

matrix([[1, 0, 0], 

[0, 2, 0], 

[0, 0, 3]], dtype=int64) 

>>> Aexp = expm(A) 

>>> Aexp 

<3x3 sparse matrix of type '<class 'numpy.float64'>' 

with 3 stored elements in Compressed Sparse Column format> 

>>> Aexp.todense() 

matrix([[ 2.71828183, 0. , 0. ], 

[ 0. , 7.3890561 , 0. ], 

[ 0. , 0. , 20.08553692]]) 

""" 

return _expm(A, use_exact_onenorm='auto') 

 

 

def _expm(A, use_exact_onenorm): 

# Core of expm, separated to allow testing exact and approximate 

# algorithms. 

 

# Avoid indiscriminate asarray() to allow sparse or other strange arrays. 

if isinstance(A, (list, tuple)): 

A = np.asarray(A) 

if len(A.shape) != 2 or A.shape[0] != A.shape[1]: 

raise ValueError('expected a square matrix') 

 

# Trivial case 

if A.shape == (1, 1): 

out = [[np.exp(A[0, 0])]] 

 

# Avoid indiscriminate casting to ndarray to 

# allow for sparse or other strange arrays 

if isspmatrix(A): 

return A.__class__(out) 

 

return np.array(out) 

 

# Detect upper triangularity. 

structure = UPPER_TRIANGULAR if _is_upper_triangular(A) else None 

 

if use_exact_onenorm == "auto": 

# Hardcode a matrix order threshold for exact vs. estimated one-norms. 

use_exact_onenorm = A.shape[0] < 200 

 

# Track functions of A to help compute the matrix exponential. 

h = _ExpmPadeHelper( 

A, structure=structure, use_exact_onenorm=use_exact_onenorm) 

 

# Try Pade order 3. 

eta_1 = max(h.d4_loose, h.d6_loose) 

if eta_1 < 1.495585217958292e-002 and _ell(h.A, 3) == 0: 

U, V = h.pade3() 

return _solve_P_Q(U, V, structure=structure) 

 

# Try Pade order 5. 

eta_2 = max(h.d4_tight, h.d6_loose) 

if eta_2 < 2.539398330063230e-001 and _ell(h.A, 5) == 0: 

U, V = h.pade5() 

return _solve_P_Q(U, V, structure=structure) 

 

# Try Pade orders 7 and 9. 

eta_3 = max(h.d6_tight, h.d8_loose) 

if eta_3 < 9.504178996162932e-001 and _ell(h.A, 7) == 0: 

U, V = h.pade7() 

return _solve_P_Q(U, V, structure=structure) 

if eta_3 < 2.097847961257068e+000 and _ell(h.A, 9) == 0: 

U, V = h.pade9() 

return _solve_P_Q(U, V, structure=structure) 

 

# Use Pade order 13. 

eta_4 = max(h.d8_loose, h.d10_loose) 

eta_5 = min(eta_3, eta_4) 

theta_13 = 4.25 

 

# Choose smallest s>=0 such that 2**(-s) eta_5 <= theta_13 

if eta_5 == 0: 

# Nilpotent special case 

s = 0 

else: 

s = max(int(np.ceil(np.log2(eta_5 / theta_13))), 0) 

s = s + _ell(2**-s * h.A, 13) 

U, V = h.pade13_scaled(s) 

X = _solve_P_Q(U, V, structure=structure) 

if structure == UPPER_TRIANGULAR: 

# Invoke Code Fragment 2.1. 

X = _fragment_2_1(X, h.A, s) 

else: 

# X = r_13(A)^(2^s) by repeated squaring. 

for i in range(s): 

X = X.dot(X) 

return X 

 

 

def _solve_P_Q(U, V, structure=None): 

""" 

A helper function for expm_2009. 

 

Parameters 

---------- 

U : ndarray 

Pade numerator. 

V : ndarray 

Pade denominator. 

structure : str, optional 

A string describing the structure of both matrices `U` and `V`. 

Only `upper_triangular` is currently supported. 

 

Notes 

----- 

The `structure` argument is inspired by similar args 

for theano and cvxopt functions. 

 

""" 

P = U + V 

Q = -U + V 

if isspmatrix(U): 

return spsolve(Q, P) 

elif structure is None: 

return solve(Q, P) 

elif structure == UPPER_TRIANGULAR: 

return solve_triangular(Q, P) 

else: 

raise ValueError('unsupported matrix structure: ' + str(structure)) 

 

 

def _sinch(x): 

""" 

Stably evaluate sinch. 

 

Notes 

----- 

The strategy of falling back to a sixth order Taylor expansion 

was suggested by the Spallation Neutron Source docs 

which was found on the internet by google search. 

http://www.ornl.gov/~t6p/resources/xal/javadoc/gov/sns/tools/math/ElementaryFunction.html 

The details of the cutoff point and the Horner-like evaluation 

was picked without reference to anything in particular. 

 

Note that sinch is not currently implemented in scipy.special, 

whereas the "engineer's" definition of sinc is implemented. 

The implementation of sinc involves a scaling factor of pi 

that distinguishes it from the "mathematician's" version of sinc. 

 

""" 

 

# If x is small then use sixth order Taylor expansion. 

# How small is small? I am using the point where the relative error 

# of the approximation is less than 1e-14. 

# If x is large then directly evaluate sinh(x) / x. 

x2 = x*x 

if abs(x) < 0.0135: 

return 1 + (x2/6.)*(1 + (x2/20.)*(1 + (x2/42.))) 

else: 

return np.sinh(x) / x 

 

 

def _eq_10_42(lam_1, lam_2, t_12): 

""" 

Equation (10.42) of Functions of Matrices: Theory and Computation. 

 

Notes 

----- 

This is a helper function for _fragment_2_1 of expm_2009. 

Equation (10.42) is on page 251 in the section on Schur algorithms. 

In particular, section 10.4.3 explains the Schur-Parlett algorithm. 

expm([[lam_1, t_12], [0, lam_1]) 

= 

[[exp(lam_1), t_12*exp((lam_1 + lam_2)/2)*sinch((lam_1 - lam_2)/2)], 

[0, exp(lam_2)] 

""" 

 

# The plain formula t_12 * (exp(lam_2) - exp(lam_2)) / (lam_2 - lam_1) 

# apparently suffers from cancellation, according to Higham's textbook. 

# A nice implementation of sinch, defined as sinh(x)/x, 

# will apparently work around the cancellation. 

a = 0.5 * (lam_1 + lam_2) 

b = 0.5 * (lam_1 - lam_2) 

return t_12 * np.exp(a) * _sinch(b) 

 

 

def _fragment_2_1(X, T, s): 

""" 

A helper function for expm_2009. 

 

Notes 

----- 

The argument X is modified in-place, but this modification is not the same 

as the returned value of the function. 

This function also takes pains to do things in ways that are compatible 

with sparse matrices, for example by avoiding fancy indexing 

and by using methods of the matrices whenever possible instead of 

using functions of the numpy or scipy libraries themselves. 

 

""" 

# Form X = r_m(2^-s T) 

# Replace diag(X) by exp(2^-s diag(T)). 

n = X.shape[0] 

diag_T = np.ravel(T.diagonal().copy()) 

 

# Replace diag(X) by exp(2^-s diag(T)). 

scale = 2 ** -s 

exp_diag = np.exp(scale * diag_T) 

for k in range(n): 

X[k, k] = exp_diag[k] 

 

for i in range(s-1, -1, -1): 

X = X.dot(X) 

 

# Replace diag(X) by exp(2^-i diag(T)). 

scale = 2 ** -i 

exp_diag = np.exp(scale * diag_T) 

for k in range(n): 

X[k, k] = exp_diag[k] 

 

# Replace (first) superdiagonal of X by explicit formula 

# for superdiagonal of exp(2^-i T) from Eq (10.42) of 

# the author's 2008 textbook 

# Functions of Matrices: Theory and Computation. 

for k in range(n-1): 

lam_1 = scale * diag_T[k] 

lam_2 = scale * diag_T[k+1] 

t_12 = scale * T[k, k+1] 

value = _eq_10_42(lam_1, lam_2, t_12) 

X[k, k+1] = value 

 

# Return the updated X matrix. 

return X 

 

 

def _ell(A, m): 

""" 

A helper function for expm_2009. 

 

Parameters 

---------- 

A : linear operator 

A linear operator whose norm of power we care about. 

m : int 

The power of the linear operator 

 

Returns 

------- 

value : int 

A value related to a bound. 

 

""" 

if len(A.shape) != 2 or A.shape[0] != A.shape[1]: 

raise ValueError('expected A to be like a square matrix') 

 

p = 2*m + 1 

 

# The c_i are explained in (2.2) and (2.6) of the 2005 expm paper. 

# They are coefficients of terms of a generating function series expansion. 

choose_2p_p = scipy.special.comb(2*p, p, exact=True) 

abs_c_recip = float(choose_2p_p * math.factorial(2*p + 1)) 

 

# This is explained after Eq. (1.2) of the 2009 expm paper. 

# It is the "unit roundoff" of IEEE double precision arithmetic. 

u = 2**-53 

 

# Compute the one-norm of matrix power p of abs(A). 

A_abs_onenorm = _onenorm_matrix_power_nnm(abs(A), p) 

 

# Treat zero norm as a special case. 

if not A_abs_onenorm: 

return 0 

 

alpha = A_abs_onenorm / (_onenorm(A) * abs_c_recip) 

log2_alpha_div_u = np.log2(alpha/u) 

value = int(np.ceil(log2_alpha_div_u / (2 * m))) 

return max(value, 0)