1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

# Copyright Anne M. Archibald 2008 

# Released under the scipy license 

from __future__ import division, print_function, absolute_import 

 

import sys 

import numpy as np 

from heapq import heappush, heappop 

import scipy.sparse 

 

__all__ = ['minkowski_distance_p', 'minkowski_distance', 

'distance_matrix', 

'Rectangle', 'KDTree'] 

 

 

def minkowski_distance_p(x, y, p=2): 

""" 

Compute the p-th power of the L**p distance between two arrays. 

 

For efficiency, this function computes the L**p distance but does 

not extract the pth root. If `p` is 1 or infinity, this is equal to 

the actual L**p distance. 

 

Parameters 

---------- 

x : (M, K) array_like 

Input array. 

y : (N, K) array_like 

Input array. 

p : float, 1 <= p <= infinity 

Which Minkowski p-norm to use. 

 

Examples 

-------- 

>>> from scipy.spatial import minkowski_distance_p 

>>> minkowski_distance_p([[0,0],[0,0]], [[1,1],[0,1]]) 

array([2, 1]) 

 

""" 

x = np.asarray(x) 

y = np.asarray(y) 

if p == np.inf: 

return np.amax(np.abs(y-x), axis=-1) 

elif p == 1: 

return np.sum(np.abs(y-x), axis=-1) 

else: 

return np.sum(np.abs(y-x)**p, axis=-1) 

 

 

def minkowski_distance(x, y, p=2): 

""" 

Compute the L**p distance between two arrays. 

 

Parameters 

---------- 

x : (M, K) array_like 

Input array. 

y : (N, K) array_like 

Input array. 

p : float, 1 <= p <= infinity 

Which Minkowski p-norm to use. 

 

Examples 

-------- 

>>> from scipy.spatial import minkowski_distance 

>>> minkowski_distance([[0,0],[0,0]], [[1,1],[0,1]]) 

array([ 1.41421356, 1. ]) 

 

""" 

x = np.asarray(x) 

y = np.asarray(y) 

if p == np.inf or p == 1: 

return minkowski_distance_p(x, y, p) 

else: 

return minkowski_distance_p(x, y, p)**(1./p) 

 

 

class Rectangle(object): 

"""Hyperrectangle class. 

 

Represents a Cartesian product of intervals. 

""" 

def __init__(self, maxes, mins): 

"""Construct a hyperrectangle.""" 

self.maxes = np.maximum(maxes,mins).astype(float) 

self.mins = np.minimum(maxes,mins).astype(float) 

self.m, = self.maxes.shape 

 

def __repr__(self): 

return "<Rectangle %s>" % list(zip(self.mins, self.maxes)) 

 

def volume(self): 

"""Total volume.""" 

return np.prod(self.maxes-self.mins) 

 

def split(self, d, split): 

""" 

Produce two hyperrectangles by splitting. 

 

In general, if you need to compute maximum and minimum 

distances to the children, it can be done more efficiently 

by updating the maximum and minimum distances to the parent. 

 

Parameters 

---------- 

d : int 

Axis to split hyperrectangle along. 

split : float 

Position along axis `d` to split at. 

 

""" 

mid = np.copy(self.maxes) 

mid[d] = split 

less = Rectangle(self.mins, mid) 

mid = np.copy(self.mins) 

mid[d] = split 

greater = Rectangle(mid, self.maxes) 

return less, greater 

 

def min_distance_point(self, x, p=2.): 

""" 

Return the minimum distance between input and points in the hyperrectangle. 

 

Parameters 

---------- 

x : array_like 

Input. 

p : float, optional 

Input. 

 

""" 

return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-x,x-self.maxes)),p) 

 

def max_distance_point(self, x, p=2.): 

""" 

Return the maximum distance between input and points in the hyperrectangle. 

 

Parameters 

---------- 

x : array_like 

Input array. 

p : float, optional 

Input. 

 

""" 

return minkowski_distance(0, np.maximum(self.maxes-x,x-self.mins),p) 

 

def min_distance_rectangle(self, other, p=2.): 

""" 

Compute the minimum distance between points in the two hyperrectangles. 

 

Parameters 

---------- 

other : hyperrectangle 

Input. 

p : float 

Input. 

 

""" 

return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-other.maxes,other.mins-self.maxes)),p) 

 

def max_distance_rectangle(self, other, p=2.): 

""" 

Compute the maximum distance between points in the two hyperrectangles. 

 

Parameters 

---------- 

other : hyperrectangle 

Input. 

p : float, optional 

Input. 

 

""" 

return minkowski_distance(0, np.maximum(self.maxes-other.mins,other.maxes-self.mins),p) 

 

 

class KDTree(object): 

""" 

kd-tree for quick nearest-neighbor lookup 

 

This class provides an index into a set of k-dimensional points which 

can be used to rapidly look up the nearest neighbors of any point. 

 

Parameters 

---------- 

data : (N,K) array_like 

The data points to be indexed. This array is not copied, and 

so modifying this data will result in bogus results. 

leafsize : int, optional 

The number of points at which the algorithm switches over to 

brute-force. Has to be positive. 

 

Raises 

------ 

RuntimeError 

The maximum recursion limit can be exceeded for large data 

sets. If this happens, either increase the value for the `leafsize` 

parameter or increase the recursion limit by:: 

 

>>> import sys 

>>> sys.setrecursionlimit(10000) 

 

See Also 

-------- 

cKDTree : Implementation of `KDTree` in Cython 

 

Notes 

----- 

The algorithm used is described in Maneewongvatana and Mount 1999. 

The general idea is that the kd-tree is a binary tree, each of whose 

nodes represents an axis-aligned hyperrectangle. Each node specifies 

an axis and splits the set of points based on whether their coordinate 

along that axis is greater than or less than a particular value. 

 

During construction, the axis and splitting point are chosen by the 

"sliding midpoint" rule, which ensures that the cells do not all 

become long and thin. 

 

The tree can be queried for the r closest neighbors of any given point 

(optionally returning only those within some maximum distance of the 

point). It can also be queried, with a substantial gain in efficiency, 

for the r approximate closest neighbors. 

 

For large dimensions (20 is already large) do not expect this to run 

significantly faster than brute force. High-dimensional nearest-neighbor 

queries are a substantial open problem in computer science. 

 

The tree also supports all-neighbors queries, both with arrays of points 

and with other kd-trees. These do use a reasonably efficient algorithm, 

but the kd-tree is not necessarily the best data structure for this 

sort of calculation. 

 

""" 

def __init__(self, data, leafsize=10): 

self.data = np.asarray(data) 

self.n, self.m = np.shape(self.data) 

self.leafsize = int(leafsize) 

if self.leafsize < 1: 

raise ValueError("leafsize must be at least 1") 

self.maxes = np.amax(self.data,axis=0) 

self.mins = np.amin(self.data,axis=0) 

 

self.tree = self.__build(np.arange(self.n), self.maxes, self.mins) 

 

class node(object): 

if sys.version_info[0] >= 3: 

def __lt__(self, other): 

return id(self) < id(other) 

 

def __gt__(self, other): 

return id(self) > id(other) 

 

def __le__(self, other): 

return id(self) <= id(other) 

 

def __ge__(self, other): 

return id(self) >= id(other) 

 

def __eq__(self, other): 

return id(self) == id(other) 

 

class leafnode(node): 

def __init__(self, idx): 

self.idx = idx 

self.children = len(idx) 

 

class innernode(node): 

def __init__(self, split_dim, split, less, greater): 

self.split_dim = split_dim 

self.split = split 

self.less = less 

self.greater = greater 

self.children = less.children+greater.children 

 

def __build(self, idx, maxes, mins): 

if len(idx) <= self.leafsize: 

return KDTree.leafnode(idx) 

else: 

data = self.data[idx] 

# maxes = np.amax(data,axis=0) 

# mins = np.amin(data,axis=0) 

d = np.argmax(maxes-mins) 

maxval = maxes[d] 

minval = mins[d] 

if maxval == minval: 

# all points are identical; warn user? 

return KDTree.leafnode(idx) 

data = data[:,d] 

 

# sliding midpoint rule; see Maneewongvatana and Mount 1999 

# for arguments that this is a good idea. 

split = (maxval+minval)/2 

less_idx = np.nonzero(data <= split)[0] 

greater_idx = np.nonzero(data > split)[0] 

if len(less_idx) == 0: 

split = np.amin(data) 

less_idx = np.nonzero(data <= split)[0] 

greater_idx = np.nonzero(data > split)[0] 

if len(greater_idx) == 0: 

split = np.amax(data) 

less_idx = np.nonzero(data < split)[0] 

greater_idx = np.nonzero(data >= split)[0] 

if len(less_idx) == 0: 

# _still_ zero? all must have the same value 

if not np.all(data == data[0]): 

raise ValueError("Troublesome data array: %s" % data) 

split = data[0] 

less_idx = np.arange(len(data)-1) 

greater_idx = np.array([len(data)-1]) 

 

lessmaxes = np.copy(maxes) 

lessmaxes[d] = split 

greatermins = np.copy(mins) 

greatermins[d] = split 

return KDTree.innernode(d, split, 

self.__build(idx[less_idx],lessmaxes,mins), 

self.__build(idx[greater_idx],maxes,greatermins)) 

 

def __query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf): 

 

side_distances = np.maximum(0,np.maximum(x-self.maxes,self.mins-x)) 

if p != np.inf: 

side_distances **= p 

min_distance = np.sum(side_distances) 

else: 

min_distance = np.amax(side_distances) 

 

# priority queue for chasing nodes 

# entries are: 

# minimum distance between the cell and the target 

# distances between the nearest side of the cell and the target 

# the head node of the cell 

q = [(min_distance, 

tuple(side_distances), 

self.tree)] 

# priority queue for the nearest neighbors 

# furthest known neighbor first 

# entries are (-distance**p, i) 

neighbors = [] 

 

if eps == 0: 

epsfac = 1 

elif p == np.inf: 

epsfac = 1/(1+eps) 

else: 

epsfac = 1/(1+eps)**p 

 

if p != np.inf and distance_upper_bound != np.inf: 

distance_upper_bound = distance_upper_bound**p 

 

while q: 

min_distance, side_distances, node = heappop(q) 

if isinstance(node, KDTree.leafnode): 

# brute-force 

data = self.data[node.idx] 

ds = minkowski_distance_p(data,x[np.newaxis,:],p) 

for i in range(len(ds)): 

if ds[i] < distance_upper_bound: 

if len(neighbors) == k: 

heappop(neighbors) 

heappush(neighbors, (-ds[i], node.idx[i])) 

if len(neighbors) == k: 

distance_upper_bound = -neighbors[0][0] 

else: 

# we don't push cells that are too far onto the queue at all, 

# but since the distance_upper_bound decreases, we might get 

# here even if the cell's too far 

if min_distance > distance_upper_bound*epsfac: 

# since this is the nearest cell, we're done, bail out 

break 

# compute minimum distances to the children and push them on 

if x[node.split_dim] < node.split: 

near, far = node.less, node.greater 

else: 

near, far = node.greater, node.less 

 

# near child is at the same distance as the current node 

heappush(q,(min_distance, side_distances, near)) 

 

# far child is further by an amount depending only 

# on the split value 

sd = list(side_distances) 

if p == np.inf: 

min_distance = max(min_distance, abs(node.split-x[node.split_dim])) 

elif p == 1: 

sd[node.split_dim] = np.abs(node.split-x[node.split_dim]) 

min_distance = min_distance - side_distances[node.split_dim] + sd[node.split_dim] 

else: 

sd[node.split_dim] = np.abs(node.split-x[node.split_dim])**p 

min_distance = min_distance - side_distances[node.split_dim] + sd[node.split_dim] 

 

# far child might be too far, if so, don't bother pushing it 

if min_distance <= distance_upper_bound*epsfac: 

heappush(q,(min_distance, tuple(sd), far)) 

 

if p == np.inf: 

return sorted([(-d,i) for (d,i) in neighbors]) 

else: 

return sorted([((-d)**(1./p),i) for (d,i) in neighbors]) 

 

def query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf): 

""" 

Query the kd-tree for nearest neighbors 

 

Parameters 

---------- 

x : array_like, last dimension self.m 

An array of points to query. 

k : int, optional 

The number of nearest neighbors to return. 

eps : nonnegative float, optional 

Return approximate nearest neighbors; the kth returned value 

is guaranteed to be no further than (1+eps) times the 

distance to the real kth nearest neighbor. 

p : float, 1<=p<=infinity, optional 

Which Minkowski p-norm to use. 

1 is the sum-of-absolute-values "Manhattan" distance 

2 is the usual Euclidean distance 

infinity is the maximum-coordinate-difference distance 

distance_upper_bound : nonnegative float, optional 

Return only neighbors within this distance. This is used to prune 

tree searches, so if you are doing a series of nearest-neighbor 

queries, it may help to supply the distance to the nearest neighbor 

of the most recent point. 

 

Returns 

------- 

d : float or array of floats 

The distances to the nearest neighbors. 

If x has shape tuple+(self.m,), then d has shape tuple if 

k is one, or tuple+(k,) if k is larger than one. Missing 

neighbors (e.g. when k > n or distance_upper_bound is 

given) are indicated with infinite distances. If k is None, 

then d is an object array of shape tuple, containing lists 

of distances. In either case the hits are sorted by distance 

(nearest first). 

i : integer or array of integers 

The locations of the neighbors in self.data. i is the same 

shape as d. 

 

Examples 

-------- 

>>> from scipy import spatial 

>>> x, y = np.mgrid[0:5, 2:8] 

>>> tree = spatial.KDTree(list(zip(x.ravel(), y.ravel()))) 

>>> tree.data 

array([[0, 2], 

[0, 3], 

[0, 4], 

[0, 5], 

[0, 6], 

[0, 7], 

[1, 2], 

[1, 3], 

[1, 4], 

[1, 5], 

[1, 6], 

[1, 7], 

[2, 2], 

[2, 3], 

[2, 4], 

[2, 5], 

[2, 6], 

[2, 7], 

[3, 2], 

[3, 3], 

[3, 4], 

[3, 5], 

[3, 6], 

[3, 7], 

[4, 2], 

[4, 3], 

[4, 4], 

[4, 5], 

[4, 6], 

[4, 7]]) 

>>> pts = np.array([[0, 0], [2.1, 2.9]]) 

>>> tree.query(pts) 

(array([ 2. , 0.14142136]), array([ 0, 13])) 

>>> tree.query(pts[0]) 

(2.0, 0) 

 

""" 

x = np.asarray(x) 

if np.shape(x)[-1] != self.m: 

raise ValueError("x must consist of vectors of length %d but has shape %s" % (self.m, np.shape(x))) 

if p < 1: 

raise ValueError("Only p-norms with 1<=p<=infinity permitted") 

retshape = np.shape(x)[:-1] 

if retshape != (): 

if k is None: 

dd = np.empty(retshape,dtype=object) 

ii = np.empty(retshape,dtype=object) 

elif k > 1: 

dd = np.empty(retshape+(k,),dtype=float) 

dd.fill(np.inf) 

ii = np.empty(retshape+(k,),dtype=int) 

ii.fill(self.n) 

elif k == 1: 

dd = np.empty(retshape,dtype=float) 

dd.fill(np.inf) 

ii = np.empty(retshape,dtype=int) 

ii.fill(self.n) 

else: 

raise ValueError("Requested %s nearest neighbors; acceptable numbers are integers greater than or equal to one, or None") 

for c in np.ndindex(retshape): 

hits = self.__query(x[c], k=k, eps=eps, p=p, distance_upper_bound=distance_upper_bound) 

if k is None: 

dd[c] = [d for (d,i) in hits] 

ii[c] = [i for (d,i) in hits] 

elif k > 1: 

for j in range(len(hits)): 

dd[c+(j,)], ii[c+(j,)] = hits[j] 

elif k == 1: 

if len(hits) > 0: 

dd[c], ii[c] = hits[0] 

else: 

dd[c] = np.inf 

ii[c] = self.n 

return dd, ii 

else: 

hits = self.__query(x, k=k, eps=eps, p=p, distance_upper_bound=distance_upper_bound) 

if k is None: 

return [d for (d,i) in hits], [i for (d,i) in hits] 

elif k == 1: 

if len(hits) > 0: 

return hits[0] 

else: 

return np.inf, self.n 

elif k > 1: 

dd = np.empty(k,dtype=float) 

dd.fill(np.inf) 

ii = np.empty(k,dtype=int) 

ii.fill(self.n) 

for j in range(len(hits)): 

dd[j], ii[j] = hits[j] 

return dd, ii 

else: 

raise ValueError("Requested %s nearest neighbors; acceptable numbers are integers greater than or equal to one, or None") 

 

def __query_ball_point(self, x, r, p=2., eps=0): 

R = Rectangle(self.maxes, self.mins) 

 

def traverse_checking(node, rect): 

if rect.min_distance_point(x, p) > r / (1. + eps): 

return [] 

elif rect.max_distance_point(x, p) < r * (1. + eps): 

return traverse_no_checking(node) 

elif isinstance(node, KDTree.leafnode): 

d = self.data[node.idx] 

return node.idx[minkowski_distance(d, x, p) <= r].tolist() 

else: 

less, greater = rect.split(node.split_dim, node.split) 

return traverse_checking(node.less, less) + \ 

traverse_checking(node.greater, greater) 

 

def traverse_no_checking(node): 

if isinstance(node, KDTree.leafnode): 

return node.idx.tolist() 

else: 

return traverse_no_checking(node.less) + \ 

traverse_no_checking(node.greater) 

 

return traverse_checking(self.tree, R) 

 

def query_ball_point(self, x, r, p=2., eps=0): 

"""Find all points within distance r of point(s) x. 

 

Parameters 

---------- 

x : array_like, shape tuple + (self.m,) 

The point or points to search for neighbors of. 

r : positive float 

The radius of points to return. 

p : float, optional 

Which Minkowski p-norm to use. Should be in the range [1, inf]. 

eps : nonnegative float, optional 

Approximate search. Branches of the tree are not explored if their 

nearest points are further than ``r / (1 + eps)``, and branches are 

added in bulk if their furthest points are nearer than 

``r * (1 + eps)``. 

 

Returns 

------- 

results : list or array of lists 

If `x` is a single point, returns a list of the indices of the 

neighbors of `x`. If `x` is an array of points, returns an object 

array of shape tuple containing lists of neighbors. 

 

Notes 

----- 

If you have many points whose neighbors you want to find, you may save 

substantial amounts of time by putting them in a KDTree and using 

query_ball_tree. 

 

Examples 

-------- 

>>> from scipy import spatial 

>>> x, y = np.mgrid[0:5, 0:5] 

>>> points = np.c_[x.ravel(), y.ravel()] 

>>> tree = spatial.KDTree(points) 

>>> tree.query_ball_point([2, 0], 1) 

[5, 10, 11, 15] 

 

Query multiple points and plot the results: 

 

>>> import matplotlib.pyplot as plt 

>>> points = np.asarray(points) 

>>> plt.plot(points[:,0], points[:,1], '.') 

>>> for results in tree.query_ball_point(([2, 0], [3, 3]), 1): 

... nearby_points = points[results] 

... plt.plot(nearby_points[:,0], nearby_points[:,1], 'o') 

>>> plt.margins(0.1, 0.1) 

>>> plt.show() 

 

""" 

x = np.asarray(x) 

if x.shape[-1] != self.m: 

raise ValueError("Searching for a %d-dimensional point in a " 

"%d-dimensional KDTree" % (x.shape[-1], self.m)) 

if len(x.shape) == 1: 

return self.__query_ball_point(x, r, p, eps) 

else: 

retshape = x.shape[:-1] 

result = np.empty(retshape, dtype=object) 

for c in np.ndindex(retshape): 

result[c] = self.__query_ball_point(x[c], r, p=p, eps=eps) 

return result 

 

def query_ball_tree(self, other, r, p=2., eps=0): 

"""Find all pairs of points whose distance is at most r 

 

Parameters 

---------- 

other : KDTree instance 

The tree containing points to search against. 

r : float 

The maximum distance, has to be positive. 

p : float, optional 

Which Minkowski norm to use. `p` has to meet the condition 

``1 <= p <= infinity``. 

eps : float, optional 

Approximate search. Branches of the tree are not explored 

if their nearest points are further than ``r/(1+eps)``, and 

branches are added in bulk if their furthest points are nearer 

than ``r * (1+eps)``. `eps` has to be non-negative. 

 

Returns 

------- 

results : list of lists 

For each element ``self.data[i]`` of this tree, ``results[i]`` is a 

list of the indices of its neighbors in ``other.data``. 

 

""" 

results = [[] for i in range(self.n)] 

 

def traverse_checking(node1, rect1, node2, rect2): 

if rect1.min_distance_rectangle(rect2, p) > r/(1.+eps): 

return 

elif rect1.max_distance_rectangle(rect2, p) < r*(1.+eps): 

traverse_no_checking(node1, node2) 

elif isinstance(node1, KDTree.leafnode): 

if isinstance(node2, KDTree.leafnode): 

d = other.data[node2.idx] 

for i in node1.idx: 

results[i] += node2.idx[minkowski_distance(d,self.data[i],p) <= r].tolist() 

else: 

less, greater = rect2.split(node2.split_dim, node2.split) 

traverse_checking(node1,rect1,node2.less,less) 

traverse_checking(node1,rect1,node2.greater,greater) 

elif isinstance(node2, KDTree.leafnode): 

less, greater = rect1.split(node1.split_dim, node1.split) 

traverse_checking(node1.less,less,node2,rect2) 

traverse_checking(node1.greater,greater,node2,rect2) 

else: 

less1, greater1 = rect1.split(node1.split_dim, node1.split) 

less2, greater2 = rect2.split(node2.split_dim, node2.split) 

traverse_checking(node1.less,less1,node2.less,less2) 

traverse_checking(node1.less,less1,node2.greater,greater2) 

traverse_checking(node1.greater,greater1,node2.less,less2) 

traverse_checking(node1.greater,greater1,node2.greater,greater2) 

 

def traverse_no_checking(node1, node2): 

if isinstance(node1, KDTree.leafnode): 

if isinstance(node2, KDTree.leafnode): 

for i in node1.idx: 

results[i] += node2.idx.tolist() 

else: 

traverse_no_checking(node1, node2.less) 

traverse_no_checking(node1, node2.greater) 

else: 

traverse_no_checking(node1.less, node2) 

traverse_no_checking(node1.greater, node2) 

 

traverse_checking(self.tree, Rectangle(self.maxes, self.mins), 

other.tree, Rectangle(other.maxes, other.mins)) 

return results 

 

def query_pairs(self, r, p=2., eps=0): 

""" 

Find all pairs of points within a distance. 

 

Parameters 

---------- 

r : positive float 

The maximum distance. 

p : float, optional 

Which Minkowski norm to use. `p` has to meet the condition 

``1 <= p <= infinity``. 

eps : float, optional 

Approximate search. Branches of the tree are not explored 

if their nearest points are further than ``r/(1+eps)``, and 

branches are added in bulk if their furthest points are nearer 

than ``r * (1+eps)``. `eps` has to be non-negative. 

 

Returns 

------- 

results : set 

Set of pairs ``(i,j)``, with ``i < j``, for which the corresponding 

positions are close. 

 

""" 

results = set() 

 

def traverse_checking(node1, rect1, node2, rect2): 

if rect1.min_distance_rectangle(rect2, p) > r/(1.+eps): 

return 

elif rect1.max_distance_rectangle(rect2, p) < r*(1.+eps): 

traverse_no_checking(node1, node2) 

elif isinstance(node1, KDTree.leafnode): 

if isinstance(node2, KDTree.leafnode): 

# Special care to avoid duplicate pairs 

if id(node1) == id(node2): 

d = self.data[node2.idx] 

for i in node1.idx: 

for j in node2.idx[minkowski_distance(d,self.data[i],p) <= r]: 

if i < j: 

results.add((i,j)) 

else: 

d = self.data[node2.idx] 

for i in node1.idx: 

for j in node2.idx[minkowski_distance(d,self.data[i],p) <= r]: 

if i < j: 

results.add((i,j)) 

elif j < i: 

results.add((j,i)) 

else: 

less, greater = rect2.split(node2.split_dim, node2.split) 

traverse_checking(node1,rect1,node2.less,less) 

traverse_checking(node1,rect1,node2.greater,greater) 

elif isinstance(node2, KDTree.leafnode): 

less, greater = rect1.split(node1.split_dim, node1.split) 

traverse_checking(node1.less,less,node2,rect2) 

traverse_checking(node1.greater,greater,node2,rect2) 

else: 

less1, greater1 = rect1.split(node1.split_dim, node1.split) 

less2, greater2 = rect2.split(node2.split_dim, node2.split) 

traverse_checking(node1.less,less1,node2.less,less2) 

traverse_checking(node1.less,less1,node2.greater,greater2) 

 

# Avoid traversing (node1.less, node2.greater) and 

# (node1.greater, node2.less) (it's the same node pair twice 

# over, which is the source of the complication in the 

# original KDTree.query_pairs) 

if id(node1) != id(node2): 

traverse_checking(node1.greater,greater1,node2.less,less2) 

 

traverse_checking(node1.greater,greater1,node2.greater,greater2) 

 

def traverse_no_checking(node1, node2): 

if isinstance(node1, KDTree.leafnode): 

if isinstance(node2, KDTree.leafnode): 

# Special care to avoid duplicate pairs 

if id(node1) == id(node2): 

for i in node1.idx: 

for j in node2.idx: 

if i < j: 

results.add((i,j)) 

else: 

for i in node1.idx: 

for j in node2.idx: 

if i < j: 

results.add((i,j)) 

elif j < i: 

results.add((j,i)) 

else: 

traverse_no_checking(node1, node2.less) 

traverse_no_checking(node1, node2.greater) 

else: 

# Avoid traversing (node1.less, node2.greater) and 

# (node1.greater, node2.less) (it's the same node pair twice 

# over, which is the source of the complication in the 

# original KDTree.query_pairs) 

if id(node1) == id(node2): 

traverse_no_checking(node1.less, node2.less) 

traverse_no_checking(node1.less, node2.greater) 

traverse_no_checking(node1.greater, node2.greater) 

else: 

traverse_no_checking(node1.less, node2) 

traverse_no_checking(node1.greater, node2) 

 

traverse_checking(self.tree, Rectangle(self.maxes, self.mins), 

self.tree, Rectangle(self.maxes, self.mins)) 

return results 

 

def count_neighbors(self, other, r, p=2.): 

""" 

Count how many nearby pairs can be formed. 

 

Count the number of pairs (x1,x2) can be formed, with x1 drawn 

from self and x2 drawn from `other`, and where 

``distance(x1, x2, p) <= r``. 

This is the "two-point correlation" described in Gray and Moore 2000, 

"N-body problems in statistical learning", and the code here is based 

on their algorithm. 

 

Parameters 

---------- 

other : KDTree instance 

The other tree to draw points from. 

r : float or one-dimensional array of floats 

The radius to produce a count for. Multiple radii are searched with 

a single tree traversal. 

p : float, 1<=p<=infinity, optional 

Which Minkowski p-norm to use 

 

Returns 

------- 

result : int or 1-D array of ints 

The number of pairs. Note that this is internally stored in a numpy 

int, and so may overflow if very large (2e9). 

 

""" 

def traverse(node1, rect1, node2, rect2, idx): 

min_r = rect1.min_distance_rectangle(rect2,p) 

max_r = rect1.max_distance_rectangle(rect2,p) 

c_greater = r[idx] > max_r 

result[idx[c_greater]] += node1.children*node2.children 

idx = idx[(min_r <= r[idx]) & (r[idx] <= max_r)] 

if len(idx) == 0: 

return 

 

if isinstance(node1,KDTree.leafnode): 

if isinstance(node2,KDTree.leafnode): 

ds = minkowski_distance(self.data[node1.idx][:,np.newaxis,:], 

other.data[node2.idx][np.newaxis,:,:], 

p).ravel() 

ds.sort() 

result[idx] += np.searchsorted(ds,r[idx],side='right') 

else: 

less, greater = rect2.split(node2.split_dim, node2.split) 

traverse(node1, rect1, node2.less, less, idx) 

traverse(node1, rect1, node2.greater, greater, idx) 

else: 

if isinstance(node2,KDTree.leafnode): 

less, greater = rect1.split(node1.split_dim, node1.split) 

traverse(node1.less, less, node2, rect2, idx) 

traverse(node1.greater, greater, node2, rect2, idx) 

else: 

less1, greater1 = rect1.split(node1.split_dim, node1.split) 

less2, greater2 = rect2.split(node2.split_dim, node2.split) 

traverse(node1.less,less1,node2.less,less2,idx) 

traverse(node1.less,less1,node2.greater,greater2,idx) 

traverse(node1.greater,greater1,node2.less,less2,idx) 

traverse(node1.greater,greater1,node2.greater,greater2,idx) 

 

R1 = Rectangle(self.maxes, self.mins) 

R2 = Rectangle(other.maxes, other.mins) 

if np.shape(r) == (): 

r = np.array([r]) 

result = np.zeros(1,dtype=int) 

traverse(self.tree, R1, other.tree, R2, np.arange(1)) 

return result[0] 

elif len(np.shape(r)) == 1: 

r = np.asarray(r) 

n, = r.shape 

result = np.zeros(n,dtype=int) 

traverse(self.tree, R1, other.tree, R2, np.arange(n)) 

return result 

else: 

raise ValueError("r must be either a single value or a one-dimensional array of values") 

 

def sparse_distance_matrix(self, other, max_distance, p=2.): 

""" 

Compute a sparse distance matrix 

 

Computes a distance matrix between two KDTrees, leaving as zero 

any distance greater than max_distance. 

 

Parameters 

---------- 

other : KDTree 

 

max_distance : positive float 

 

p : float, optional 

 

Returns 

------- 

result : dok_matrix 

Sparse matrix representing the results in "dictionary of keys" format. 

 

""" 

result = scipy.sparse.dok_matrix((self.n,other.n)) 

 

def traverse(node1, rect1, node2, rect2): 

if rect1.min_distance_rectangle(rect2, p) > max_distance: 

return 

elif isinstance(node1, KDTree.leafnode): 

if isinstance(node2, KDTree.leafnode): 

for i in node1.idx: 

for j in node2.idx: 

d = minkowski_distance(self.data[i],other.data[j],p) 

if d <= max_distance: 

result[i,j] = d 

else: 

less, greater = rect2.split(node2.split_dim, node2.split) 

traverse(node1,rect1,node2.less,less) 

traverse(node1,rect1,node2.greater,greater) 

elif isinstance(node2, KDTree.leafnode): 

less, greater = rect1.split(node1.split_dim, node1.split) 

traverse(node1.less,less,node2,rect2) 

traverse(node1.greater,greater,node2,rect2) 

else: 

less1, greater1 = rect1.split(node1.split_dim, node1.split) 

less2, greater2 = rect2.split(node2.split_dim, node2.split) 

traverse(node1.less,less1,node2.less,less2) 

traverse(node1.less,less1,node2.greater,greater2) 

traverse(node1.greater,greater1,node2.less,less2) 

traverse(node1.greater,greater1,node2.greater,greater2) 

traverse(self.tree, Rectangle(self.maxes, self.mins), 

other.tree, Rectangle(other.maxes, other.mins)) 

 

return result 

 

 

def distance_matrix(x, y, p=2, threshold=1000000): 

""" 

Compute the distance matrix. 

 

Returns the matrix of all pair-wise distances. 

 

Parameters 

---------- 

x : (M, K) array_like 

Matrix of M vectors in K dimensions. 

y : (N, K) array_like 

Matrix of N vectors in K dimensions. 

p : float, 1 <= p <= infinity 

Which Minkowski p-norm to use. 

threshold : positive int 

If ``M * N * K`` > `threshold`, algorithm uses a Python loop instead 

of large temporary arrays. 

 

Returns 

------- 

result : (M, N) ndarray 

Matrix containing the distance from every vector in `x` to every vector 

in `y`. 

 

Examples 

-------- 

>>> from scipy.spatial import distance_matrix 

>>> distance_matrix([[0,0],[0,1]], [[1,0],[1,1]]) 

array([[ 1. , 1.41421356], 

[ 1.41421356, 1. ]]) 

 

""" 

 

x = np.asarray(x) 

m, k = x.shape 

y = np.asarray(y) 

n, kk = y.shape 

 

if k != kk: 

raise ValueError("x contains %d-dimensional vectors but y contains %d-dimensional vectors" % (k, kk)) 

 

if m*n*k <= threshold: 

return minkowski_distance(x[:,np.newaxis,:],y[np.newaxis,:,:],p) 

else: 

result = np.empty((m,n),dtype=float) # FIXME: figure out the best dtype 

if m < n: 

for i in range(m): 

result[i,:] = minkowski_distance(x[i],y,p) 

else: 

for j in range(n): 

result[:,j] = minkowski_distance(x,y[j],p) 

return result