1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

from __future__ import division, print_function, absolute_import 

 

from ._ufuncs import (_spherical_jn, _spherical_yn, _spherical_in, 

_spherical_kn, _spherical_jn_d, _spherical_yn_d, 

_spherical_in_d, _spherical_kn_d) 

 

def spherical_jn(n, z, derivative=False): 

r"""Spherical Bessel function of the first kind or its derivative. 

 

Defined as [1]_, 

 

.. math:: j_n(z) = \sqrt{\frac{\pi}{2z}} J_{n + 1/2}(z), 

 

where :math:`J_n` is the Bessel function of the first kind. 

 

Parameters 

---------- 

n : int, array_like 

Order of the Bessel function (n >= 0). 

z : complex or float, array_like 

Argument of the Bessel function. 

derivative : bool, optional 

If True, the value of the derivative (rather than the function 

itself) is returned. 

 

Returns 

------- 

jn : ndarray 

 

Notes 

----- 

For real arguments greater than the order, the function is computed 

using the ascending recurrence [2]_. For small real or complex 

arguments, the definitional relation to the cylindrical Bessel function 

of the first kind is used. 

 

The derivative is computed using the relations [3]_, 

 

.. math:: 

j_n'(z) = j_{n-1}(z) - \frac{n + 1}{z} j_n(z). 

 

j_0'(z) = -j_1(z) 

 

 

.. versionadded:: 0.18.0 

 

References 

---------- 

.. [1] http://dlmf.nist.gov/10.47.E3 

.. [2] http://dlmf.nist.gov/10.51.E1 

.. [3] http://dlmf.nist.gov/10.51.E2 

""" 

if derivative: 

return _spherical_jn_d(n, z) 

else: 

return _spherical_jn(n, z) 

 

 

def spherical_yn(n, z, derivative=False): 

r"""Spherical Bessel function of the second kind or its derivative. 

 

Defined as [1]_, 

 

.. math:: y_n(z) = \sqrt{\frac{\pi}{2z}} Y_{n + 1/2}(z), 

 

where :math:`Y_n` is the Bessel function of the second kind. 

 

Parameters 

---------- 

n : int, array_like 

Order of the Bessel function (n >= 0). 

z : complex or float, array_like 

Argument of the Bessel function. 

derivative : bool, optional 

If True, the value of the derivative (rather than the function 

itself) is returned. 

 

Returns 

------- 

yn : ndarray 

 

Notes 

----- 

For real arguments, the function is computed using the ascending 

recurrence [2]_. For complex arguments, the definitional relation to 

the cylindrical Bessel function of the second kind is used. 

 

The derivative is computed using the relations [3]_, 

 

.. math:: 

y_n' = y_{n-1} - \frac{n + 1}{z} y_n. 

 

y_0' = -y_1 

 

 

.. versionadded:: 0.18.0 

 

References 

---------- 

.. [1] http://dlmf.nist.gov/10.47.E4 

.. [2] http://dlmf.nist.gov/10.51.E1 

.. [3] http://dlmf.nist.gov/10.51.E2 

""" 

if derivative: 

return _spherical_yn_d(n, z) 

else: 

return _spherical_yn(n, z) 

 

 

def spherical_in(n, z, derivative=False): 

r"""Modified spherical Bessel function of the first kind or its derivative. 

 

Defined as [1]_, 

 

.. math:: i_n(z) = \sqrt{\frac{\pi}{2z}} I_{n + 1/2}(z), 

 

where :math:`I_n` is the modified Bessel function of the first kind. 

 

Parameters 

---------- 

n : int, array_like 

Order of the Bessel function (n >= 0). 

z : complex or float, array_like 

Argument of the Bessel function. 

derivative : bool, optional 

If True, the value of the derivative (rather than the function 

itself) is returned. 

 

Returns 

------- 

in : ndarray 

 

Notes 

----- 

The function is computed using its definitional relation to the 

modified cylindrical Bessel function of the first kind. 

 

The derivative is computed using the relations [2]_, 

 

.. math:: 

i_n' = i_{n-1} - \frac{n + 1}{z} i_n. 

 

i_1' = i_0 

 

 

.. versionadded:: 0.18.0 

 

References 

---------- 

.. [1] http://dlmf.nist.gov/10.47.E7 

.. [2] http://dlmf.nist.gov/10.51.E5 

""" 

if derivative: 

return _spherical_in_d(n, z) 

else: 

return _spherical_in(n, z) 

 

 

def spherical_kn(n, z, derivative=False): 

r"""Modified spherical Bessel function of the second kind or its derivative. 

 

Defined as [1]_, 

 

.. math:: k_n(z) = \sqrt{\frac{\pi}{2z}} K_{n + 1/2}(z), 

 

where :math:`K_n` is the modified Bessel function of the second kind. 

 

Parameters 

---------- 

n : int, array_like 

Order of the Bessel function (n >= 0). 

z : complex or float, array_like 

Argument of the Bessel function. 

derivative : bool, optional 

If True, the value of the derivative (rather than the function 

itself) is returned. 

 

Returns 

------- 

kn : ndarray 

 

Notes 

----- 

The function is computed using its definitional relation to the 

modified cylindrical Bessel function of the second kind. 

 

The derivative is computed using the relations [2]_, 

 

.. math:: 

k_n' = -k_{n-1} - \frac{n + 1}{z} k_n. 

 

k_0' = -k_1 

 

 

.. versionadded:: 0.18.0 

 

References 

---------- 

.. [1] http://dlmf.nist.gov/10.47.E9 

.. [2] http://dlmf.nist.gov/10.51.E5 

""" 

if derivative: 

return _spherical_kn_d(n, z) 

else: 

return _spherical_kn(n, z)