1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

""" 

An extension of scipy.stats.stats to support masked arrays 

 

""" 

# Original author (2007): Pierre GF Gerard-Marchant 

 

# TODO : f_value_wilks_lambda looks botched... what are dfnum & dfden for ? 

# TODO : ttest_rel looks botched: what are x1,x2,v1,v2 for ? 

# TODO : reimplement ksonesamp 

 

from __future__ import division, print_function, absolute_import 

 

 

__all__ = ['argstoarray', 

'count_tied_groups', 

'describe', 

'f_oneway', 'find_repeats','friedmanchisquare', 

'kendalltau','kendalltau_seasonal','kruskal','kruskalwallis', 

'ks_twosamp','ks_2samp','kurtosis','kurtosistest', 

'linregress', 

'mannwhitneyu', 'meppf','mode','moment','mquantiles','msign', 

'normaltest', 

'obrientransform', 

'pearsonr','plotting_positions','pointbiserialr', 

'rankdata', 

'scoreatpercentile','sem', 

'sen_seasonal_slopes','skew','skewtest','spearmanr', 

'theilslopes','tmax','tmean','tmin','trim','trimboth', 

'trimtail','trima','trimr','trimmed_mean','trimmed_std', 

'trimmed_stde','trimmed_var','tsem','ttest_1samp','ttest_onesamp', 

'ttest_ind','ttest_rel','tvar', 

'variation', 

'winsorize', 

] 

 

import numpy as np 

from numpy import ndarray 

import numpy.ma as ma 

from numpy.ma import masked, nomask 

 

from scipy._lib.six import iteritems 

 

import itertools 

import warnings 

from collections import namedtuple 

 

from . import distributions 

import scipy.special as special 

from ._stats_mstats_common import ( 

_find_repeats, 

linregress as stats_linregress, 

theilslopes as stats_theilslopes 

) 

 

 

genmissingvaldoc = """ 

 

Notes 

----- 

Missing values are considered pair-wise: if a value is missing in x, 

the corresponding value in y is masked. 

""" 

 

 

def _chk_asarray(a, axis): 

# Always returns a masked array, raveled for axis=None 

a = ma.asanyarray(a) 

if axis is None: 

a = ma.ravel(a) 

outaxis = 0 

else: 

outaxis = axis 

return a, outaxis 

 

 

def _chk2_asarray(a, b, axis): 

a = ma.asanyarray(a) 

b = ma.asanyarray(b) 

if axis is None: 

a = ma.ravel(a) 

b = ma.ravel(b) 

outaxis = 0 

else: 

outaxis = axis 

return a, b, outaxis 

 

 

def _chk_size(a,b): 

a = ma.asanyarray(a) 

b = ma.asanyarray(b) 

(na, nb) = (a.size, b.size) 

if na != nb: 

raise ValueError("The size of the input array should match!" 

" (%s <> %s)" % (na, nb)) 

return (a, b, na) 

 

 

def argstoarray(*args): 

""" 

Constructs a 2D array from a group of sequences. 

 

Sequences are filled with missing values to match the length of the longest 

sequence. 

 

Parameters 

---------- 

args : sequences 

Group of sequences. 

 

Returns 

------- 

argstoarray : MaskedArray 

A ( `m` x `n` ) masked array, where `m` is the number of arguments and 

`n` the length of the longest argument. 

 

Notes 

----- 

`numpy.ma.row_stack` has identical behavior, but is called with a sequence 

of sequences. 

 

""" 

if len(args) == 1 and not isinstance(args[0], ndarray): 

output = ma.asarray(args[0]) 

if output.ndim != 2: 

raise ValueError("The input should be 2D") 

else: 

n = len(args) 

m = max([len(k) for k in args]) 

output = ma.array(np.empty((n,m), dtype=float), mask=True) 

for (k,v) in enumerate(args): 

output[k,:len(v)] = v 

 

output[np.logical_not(np.isfinite(output._data))] = masked 

return output 

 

 

def find_repeats(arr): 

"""Find repeats in arr and return a tuple (repeats, repeat_count). 

 

The input is cast to float64. Masked values are discarded. 

 

Parameters 

---------- 

arr : sequence 

Input array. The array is flattened if it is not 1D. 

 

Returns 

------- 

repeats : ndarray 

Array of repeated values. 

counts : ndarray 

Array of counts. 

 

""" 

# Make sure we get a copy. ma.compressed promises a "new array", but can 

# actually return a reference. 

compr = np.asarray(ma.compressed(arr), dtype=np.float64) 

try: 

need_copy = np.may_share_memory(compr, arr) 

except AttributeError: 

# numpy < 1.8.2 bug: np.may_share_memory([], []) raises, 

# while in numpy 1.8.2 and above it just (correctly) returns False. 

need_copy = False 

if need_copy: 

compr = compr.copy() 

return _find_repeats(compr) 

 

 

def count_tied_groups(x, use_missing=False): 

""" 

Counts the number of tied values. 

 

Parameters 

---------- 

x : sequence 

Sequence of data on which to counts the ties 

use_missing : bool, optional 

Whether to consider missing values as tied. 

 

Returns 

------- 

count_tied_groups : dict 

Returns a dictionary (nb of ties: nb of groups). 

 

Examples 

-------- 

>>> from scipy.stats import mstats 

>>> z = [0, 0, 0, 2, 2, 2, 3, 3, 4, 5, 6] 

>>> mstats.count_tied_groups(z) 

{2: 1, 3: 2} 

 

In the above example, the ties were 0 (3x), 2 (3x) and 3 (2x). 

 

>>> z = np.ma.array([0, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6]) 

>>> mstats.count_tied_groups(z) 

{2: 2, 3: 1} 

>>> z[[1,-1]] = np.ma.masked 

>>> mstats.count_tied_groups(z, use_missing=True) 

{2: 2, 3: 1} 

 

""" 

nmasked = ma.getmask(x).sum() 

# We need the copy as find_repeats will overwrite the initial data 

data = ma.compressed(x).copy() 

(ties, counts) = find_repeats(data) 

nties = {} 

if len(ties): 

nties = dict(zip(np.unique(counts), itertools.repeat(1))) 

nties.update(dict(zip(*find_repeats(counts)))) 

 

if nmasked and use_missing: 

try: 

nties[nmasked] += 1 

except KeyError: 

nties[nmasked] = 1 

 

return nties 

 

 

def rankdata(data, axis=None, use_missing=False): 

"""Returns the rank (also known as order statistics) of each data point 

along the given axis. 

 

If some values are tied, their rank is averaged. 

If some values are masked, their rank is set to 0 if use_missing is False, 

or set to the average rank of the unmasked values if use_missing is True. 

 

Parameters 

---------- 

data : sequence 

Input data. The data is transformed to a masked array 

axis : {None,int}, optional 

Axis along which to perform the ranking. 

If None, the array is first flattened. An exception is raised if 

the axis is specified for arrays with a dimension larger than 2 

use_missing : bool, optional 

Whether the masked values have a rank of 0 (False) or equal to the 

average rank of the unmasked values (True). 

 

""" 

def _rank1d(data, use_missing=False): 

n = data.count() 

rk = np.empty(data.size, dtype=float) 

idx = data.argsort() 

rk[idx[:n]] = np.arange(1,n+1) 

 

if use_missing: 

rk[idx[n:]] = (n+1)/2. 

else: 

rk[idx[n:]] = 0 

 

repeats = find_repeats(data.copy()) 

for r in repeats[0]: 

condition = (data == r).filled(False) 

rk[condition] = rk[condition].mean() 

return rk 

 

data = ma.array(data, copy=False) 

if axis is None: 

if data.ndim > 1: 

return _rank1d(data.ravel(), use_missing).reshape(data.shape) 

else: 

return _rank1d(data, use_missing) 

else: 

return ma.apply_along_axis(_rank1d,axis,data,use_missing).view(ndarray) 

 

 

ModeResult = namedtuple('ModeResult', ('mode', 'count')) 

 

 

def mode(a, axis=0): 

""" 

Returns an array of the modal (most common) value in the passed array. 

 

Parameters 

---------- 

a : array_like 

n-dimensional array of which to find mode(s). 

axis : int or None, optional 

Axis along which to operate. Default is 0. If None, compute over 

the whole array `a`. 

 

Returns 

------- 

mode : ndarray 

Array of modal values. 

count : ndarray 

Array of counts for each mode. 

 

Notes 

----- 

For more details, see `stats.mode`. 

 

""" 

a, axis = _chk_asarray(a, axis) 

 

def _mode1D(a): 

(rep,cnt) = find_repeats(a) 

if not cnt.ndim: 

return (0, 0) 

elif cnt.size: 

return (rep[cnt.argmax()], cnt.max()) 

else: 

not_masked_indices = ma.flatnotmasked_edges(a) 

first_not_masked_index = not_masked_indices[0] 

return (a[first_not_masked_index], 1) 

 

if axis is None: 

output = _mode1D(ma.ravel(a)) 

output = (ma.array(output[0]), ma.array(output[1])) 

else: 

output = ma.apply_along_axis(_mode1D, axis, a) 

newshape = list(a.shape) 

newshape[axis] = 1 

slices = [slice(None)] * output.ndim 

slices[axis] = 0 

modes = output[tuple(slices)].reshape(newshape) 

slices[axis] = 1 

counts = output[tuple(slices)].reshape(newshape) 

output = (modes, counts) 

 

return ModeResult(*output) 

 

 

def _betai(a, b, x): 

x = np.asanyarray(x) 

x = ma.where(x < 1.0, x, 1.0) # if x > 1 then return 1.0 

return special.betainc(a, b, x) 

 

 

def msign(x): 

"""Returns the sign of x, or 0 if x is masked.""" 

return ma.filled(np.sign(x), 0) 

 

 

def pearsonr(x,y): 

""" 

Calculates a Pearson correlation coefficient and the p-value for testing 

non-correlation. 

 

The Pearson correlation coefficient measures the linear relationship 

between two datasets. Strictly speaking, Pearson's correlation requires 

that each dataset be normally distributed. Like other correlation 

coefficients, this one varies between -1 and +1 with 0 implying no 

correlation. Correlations of -1 or +1 imply an exact linear 

relationship. Positive correlations imply that as `x` increases, so does 

`y`. Negative correlations imply that as `x` increases, `y` decreases. 

 

The p-value roughly indicates the probability of an uncorrelated system 

producing datasets that have a Pearson correlation at least as extreme 

as the one computed from these datasets. The p-values are not entirely 

reliable but are probably reasonable for datasets larger than 500 or so. 

 

Parameters 

---------- 

x : 1-D array_like 

Input 

y : 1-D array_like 

Input 

 

Returns 

------- 

pearsonr : float 

Pearson's correlation coefficient, 2-tailed p-value. 

 

References 

---------- 

http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation 

 

""" 

(x, y, n) = _chk_size(x, y) 

(x, y) = (x.ravel(), y.ravel()) 

# Get the common mask and the total nb of unmasked elements 

m = ma.mask_or(ma.getmask(x), ma.getmask(y)) 

n -= m.sum() 

df = n-2 

if df < 0: 

return (masked, masked) 

 

(mx, my) = (x.mean(), y.mean()) 

(xm, ym) = (x-mx, y-my) 

 

r_num = ma.add.reduce(xm*ym) 

r_den = ma.sqrt(ma.dot(xm,xm) * ma.dot(ym,ym)) 

r = r_num / r_den 

# Presumably, if r > 1, then it is only some small artifact of floating 

# point arithmetic. 

r = min(r, 1.0) 

r = max(r, -1.0) 

 

if r is masked or abs(r) == 1.0: 

prob = 0. 

else: 

t_squared = (df / ((1.0 - r) * (1.0 + r))) * r * r 

prob = _betai(0.5*df, 0.5, df/(df + t_squared)) 

 

return r, prob 

 

 

SpearmanrResult = namedtuple('SpearmanrResult', ('correlation', 'pvalue')) 

 

 

def spearmanr(x, y, use_ties=True): 

""" 

Calculates a Spearman rank-order correlation coefficient and the p-value 

to test for non-correlation. 

 

The Spearman correlation is a nonparametric measure of the linear 

relationship between two datasets. Unlike the Pearson correlation, the 

Spearman correlation does not assume that both datasets are normally 

distributed. Like other correlation coefficients, this one varies 

between -1 and +1 with 0 implying no correlation. Correlations of -1 or 

+1 imply a monotonic relationship. Positive correlations imply that 

as `x` increases, so does `y`. Negative correlations imply that as `x` 

increases, `y` decreases. 

 

Missing values are discarded pair-wise: if a value is missing in `x`, the 

corresponding value in `y` is masked. 

 

The p-value roughly indicates the probability of an uncorrelated system 

producing datasets that have a Spearman correlation at least as extreme 

as the one computed from these datasets. The p-values are not entirely 

reliable but are probably reasonable for datasets larger than 500 or so. 

 

Parameters 

---------- 

x : array_like 

The length of `x` must be > 2. 

y : array_like 

The length of `y` must be > 2. 

use_ties : bool, optional 

Whether the correction for ties should be computed. 

 

Returns 

------- 

correlation : float 

Spearman correlation coefficient 

pvalue : float 

2-tailed p-value. 

 

References 

---------- 

[CRCProbStat2000] section 14.7 

 

""" 

(x, y, n) = _chk_size(x, y) 

(x, y) = (x.ravel(), y.ravel()) 

 

m = ma.mask_or(ma.getmask(x), ma.getmask(y)) 

# need int() here, otherwise numpy defaults to 32 bit 

# integer on all Windows architectures, causing overflow. 

# int() will keep it infinite precision. 

n -= int(m.sum()) 

if m is not nomask: 

x = ma.array(x, mask=m, copy=True) 

y = ma.array(y, mask=m, copy=True) 

df = n-2 

if df < 0: 

raise ValueError("The input must have at least 3 entries!") 

 

# Gets the ranks and rank differences 

rankx = rankdata(x) 

ranky = rankdata(y) 

dsq = np.add.reduce((rankx-ranky)**2) 

# Tie correction 

if use_ties: 

xties = count_tied_groups(x) 

yties = count_tied_groups(y) 

corr_x = sum(v*k*(k**2-1) for (k,v) in iteritems(xties))/12. 

corr_y = sum(v*k*(k**2-1) for (k,v) in iteritems(yties))/12. 

else: 

corr_x = corr_y = 0 

 

denom = n*(n**2 - 1)/6. 

if corr_x != 0 or corr_y != 0: 

rho = denom - dsq - corr_x - corr_y 

rho /= ma.sqrt((denom-2*corr_x)*(denom-2*corr_y)) 

else: 

rho = 1. - dsq/denom 

 

t = ma.sqrt(ma.divide(df,(rho+1.0)*(1.0-rho))) * rho 

if t is masked: 

prob = 0. 

else: 

prob = _betai(0.5*df, 0.5, df/(df + t * t)) 

 

return SpearmanrResult(rho, prob) 

 

 

KendalltauResult = namedtuple('KendalltauResult', ('correlation', 'pvalue')) 

 

 

def kendalltau(x, y, use_ties=True, use_missing=False): 

""" 

Computes Kendall's rank correlation tau on two variables *x* and *y*. 

 

Parameters 

---------- 

x : sequence 

First data list (for example, time). 

y : sequence 

Second data list. 

use_ties : {True, False}, optional 

Whether ties correction should be performed. 

use_missing : {False, True}, optional 

Whether missing data should be allocated a rank of 0 (False) or the 

average rank (True) 

 

Returns 

------- 

correlation : float 

Kendall tau 

pvalue : float 

Approximate 2-side p-value. 

 

""" 

(x, y, n) = _chk_size(x, y) 

(x, y) = (x.flatten(), y.flatten()) 

m = ma.mask_or(ma.getmask(x), ma.getmask(y)) 

if m is not nomask: 

x = ma.array(x, mask=m, copy=True) 

y = ma.array(y, mask=m, copy=True) 

# need int() here, otherwise numpy defaults to 32 bit 

# integer on all Windows architectures, causing overflow. 

# int() will keep it infinite precision. 

n -= int(m.sum()) 

 

if n < 2: 

return KendalltauResult(np.nan, np.nan) 

 

rx = ma.masked_equal(rankdata(x, use_missing=use_missing), 0) 

ry = ma.masked_equal(rankdata(y, use_missing=use_missing), 0) 

idx = rx.argsort() 

(rx, ry) = (rx[idx], ry[idx]) 

C = np.sum([((ry[i+1:] > ry[i]) * (rx[i+1:] > rx[i])).filled(0).sum() 

for i in range(len(ry)-1)], dtype=float) 

D = np.sum([((ry[i+1:] < ry[i])*(rx[i+1:] > rx[i])).filled(0).sum() 

for i in range(len(ry)-1)], dtype=float) 

if use_ties: 

xties = count_tied_groups(x) 

yties = count_tied_groups(y) 

corr_x = np.sum([v*k*(k-1) for (k,v) in iteritems(xties)], dtype=float) 

corr_y = np.sum([v*k*(k-1) for (k,v) in iteritems(yties)], dtype=float) 

denom = ma.sqrt((n*(n-1)-corr_x)/2. * (n*(n-1)-corr_y)/2.) 

else: 

denom = n*(n-1)/2. 

tau = (C-D) / denom 

 

var_s = n*(n-1)*(2*n+5) 

if use_ties: 

var_s -= sum(v*k*(k-1)*(2*k+5)*1. for (k,v) in iteritems(xties)) 

var_s -= sum(v*k*(k-1)*(2*k+5)*1. for (k,v) in iteritems(yties)) 

v1 = np.sum([v*k*(k-1) for (k, v) in iteritems(xties)], dtype=float) *\ 

np.sum([v*k*(k-1) for (k, v) in iteritems(yties)], dtype=float) 

v1 /= 2.*n*(n-1) 

if n > 2: 

v2 = np.sum([v*k*(k-1)*(k-2) for (k,v) in iteritems(xties)], 

dtype=float) * \ 

np.sum([v*k*(k-1)*(k-2) for (k,v) in iteritems(yties)], 

dtype=float) 

v2 /= 9.*n*(n-1)*(n-2) 

else: 

v2 = 0 

else: 

v1 = v2 = 0 

 

var_s /= 18. 

var_s += (v1 + v2) 

z = (C-D)/np.sqrt(var_s) 

prob = special.erfc(abs(z)/np.sqrt(2)) 

return KendalltauResult(tau, prob) 

 

 

def kendalltau_seasonal(x): 

""" 

Computes a multivariate Kendall's rank correlation tau, for seasonal data. 

 

Parameters 

---------- 

x : 2-D ndarray 

Array of seasonal data, with seasons in columns. 

 

""" 

x = ma.array(x, subok=True, copy=False, ndmin=2) 

(n,m) = x.shape 

n_p = x.count(0) 

 

S_szn = sum(msign(x[i:]-x[i]).sum(0) for i in range(n)) 

S_tot = S_szn.sum() 

 

n_tot = x.count() 

ties = count_tied_groups(x.compressed()) 

corr_ties = sum(v*k*(k-1) for (k,v) in iteritems(ties)) 

denom_tot = ma.sqrt(1.*n_tot*(n_tot-1)*(n_tot*(n_tot-1)-corr_ties))/2. 

 

R = rankdata(x, axis=0, use_missing=True) 

K = ma.empty((m,m), dtype=int) 

covmat = ma.empty((m,m), dtype=float) 

denom_szn = ma.empty(m, dtype=float) 

for j in range(m): 

ties_j = count_tied_groups(x[:,j].compressed()) 

corr_j = sum(v*k*(k-1) for (k,v) in iteritems(ties_j)) 

cmb = n_p[j]*(n_p[j]-1) 

for k in range(j,m,1): 

K[j,k] = sum(msign((x[i:,j]-x[i,j])*(x[i:,k]-x[i,k])).sum() 

for i in range(n)) 

covmat[j,k] = (K[j,k] + 4*(R[:,j]*R[:,k]).sum() - 

n*(n_p[j]+1)*(n_p[k]+1))/3. 

K[k,j] = K[j,k] 

covmat[k,j] = covmat[j,k] 

 

denom_szn[j] = ma.sqrt(cmb*(cmb-corr_j)) / 2. 

 

var_szn = covmat.diagonal() 

 

z_szn = msign(S_szn) * (abs(S_szn)-1) / ma.sqrt(var_szn) 

z_tot_ind = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(var_szn.sum()) 

z_tot_dep = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(covmat.sum()) 

 

prob_szn = special.erfc(abs(z_szn)/np.sqrt(2)) 

prob_tot_ind = special.erfc(abs(z_tot_ind)/np.sqrt(2)) 

prob_tot_dep = special.erfc(abs(z_tot_dep)/np.sqrt(2)) 

 

chi2_tot = (z_szn*z_szn).sum() 

chi2_trd = m * z_szn.mean()**2 

output = {'seasonal tau': S_szn/denom_szn, 

'global tau': S_tot/denom_tot, 

'global tau (alt)': S_tot/denom_szn.sum(), 

'seasonal p-value': prob_szn, 

'global p-value (indep)': prob_tot_ind, 

'global p-value (dep)': prob_tot_dep, 

'chi2 total': chi2_tot, 

'chi2 trend': chi2_trd, 

} 

return output 

 

 

PointbiserialrResult = namedtuple('PointbiserialrResult', ('correlation', 

'pvalue')) 

 

 

def pointbiserialr(x, y): 

"""Calculates a point biserial correlation coefficient and its p-value. 

 

Parameters 

---------- 

x : array_like of bools 

Input array. 

y : array_like 

Input array. 

 

Returns 

------- 

correlation : float 

R value 

pvalue : float 

2-tailed p-value 

 

Notes 

----- 

Missing values are considered pair-wise: if a value is missing in x, 

the corresponding value in y is masked. 

 

For more details on `pointbiserialr`, see `stats.pointbiserialr`. 

 

""" 

x = ma.fix_invalid(x, copy=True).astype(bool) 

y = ma.fix_invalid(y, copy=True).astype(float) 

# Get rid of the missing data 

m = ma.mask_or(ma.getmask(x), ma.getmask(y)) 

if m is not nomask: 

unmask = np.logical_not(m) 

x = x[unmask] 

y = y[unmask] 

 

n = len(x) 

# phat is the fraction of x values that are True 

phat = x.sum() / float(n) 

y0 = y[~x] # y-values where x is False 

y1 = y[x] # y-values where x is True 

y0m = y0.mean() 

y1m = y1.mean() 

 

rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std() 

 

df = n-2 

t = rpb*ma.sqrt(df/(1.0-rpb**2)) 

prob = _betai(0.5*df, 0.5, df/(df+t*t)) 

 

return PointbiserialrResult(rpb, prob) 

 

 

LinregressResult = namedtuple('LinregressResult', ('slope', 'intercept', 

'rvalue', 'pvalue', 

'stderr')) 

 

 

def linregress(x, y=None): 

""" 

Linear regression calculation 

 

Note that the non-masked version is used, and that this docstring is 

replaced by the non-masked docstring + some info on missing data. 

 

""" 

if y is None: 

x = ma.array(x) 

if x.shape[0] == 2: 

x, y = x 

elif x.shape[1] == 2: 

x, y = x.T 

else: 

msg = ("If only `x` is given as input, it has to be of shape " 

"(2, N) or (N, 2), provided shape was %s" % str(x.shape)) 

raise ValueError(msg) 

else: 

x = ma.array(x) 

y = ma.array(y) 

 

x = x.flatten() 

y = y.flatten() 

 

m = ma.mask_or(ma.getmask(x), ma.getmask(y), shrink=False) 

if m is not nomask: 

x = ma.array(x, mask=m) 

y = ma.array(y, mask=m) 

if np.any(~m): 

slope, intercept, r, prob, sterrest = stats_linregress(x.data[~m], 

y.data[~m]) 

else: 

# All data is masked 

return None, None, None, None, None 

else: 

slope, intercept, r, prob, sterrest = stats_linregress(x.data, y.data) 

 

return LinregressResult(slope, intercept, r, prob, sterrest) 

 

 

if stats_linregress.__doc__: 

linregress.__doc__ = stats_linregress.__doc__ + genmissingvaldoc 

 

 

def theilslopes(y, x=None, alpha=0.95): 

r""" 

Computes the Theil-Sen estimator for a set of points (x, y). 

 

`theilslopes` implements a method for robust linear regression. It 

computes the slope as the median of all slopes between paired values. 

 

Parameters 

---------- 

y : array_like 

Dependent variable. 

x : array_like or None, optional 

Independent variable. If None, use ``arange(len(y))`` instead. 

alpha : float, optional 

Confidence degree between 0 and 1. Default is 95% confidence. 

Note that `alpha` is symmetric around 0.5, i.e. both 0.1 and 0.9 are 

interpreted as "find the 90% confidence interval". 

 

Returns 

------- 

medslope : float 

Theil slope. 

medintercept : float 

Intercept of the Theil line, as ``median(y) - medslope*median(x)``. 

lo_slope : float 

Lower bound of the confidence interval on `medslope`. 

up_slope : float 

Upper bound of the confidence interval on `medslope`. 

 

Notes 

----- 

For more details on `theilslopes`, see `stats.theilslopes`. 

 

""" 

y = ma.asarray(y).flatten() 

if x is None: 

x = ma.arange(len(y), dtype=float) 

else: 

x = ma.asarray(x).flatten() 

if len(x) != len(y): 

raise ValueError("Incompatible lengths ! (%s<>%s)" % (len(y),len(x))) 

 

m = ma.mask_or(ma.getmask(x), ma.getmask(y)) 

y._mask = x._mask = m 

# Disregard any masked elements of x or y 

y = y.compressed() 

x = x.compressed().astype(float) 

# We now have unmasked arrays so can use `stats.theilslopes` 

return stats_theilslopes(y, x, alpha=alpha) 

 

 

def sen_seasonal_slopes(x): 

x = ma.array(x, subok=True, copy=False, ndmin=2) 

(n,_) = x.shape 

# Get list of slopes per season 

szn_slopes = ma.vstack([(x[i+1:]-x[i])/np.arange(1,n-i)[:,None] 

for i in range(n)]) 

szn_medslopes = ma.median(szn_slopes, axis=0) 

medslope = ma.median(szn_slopes, axis=None) 

return szn_medslopes, medslope 

 

 

Ttest_1sampResult = namedtuple('Ttest_1sampResult', ('statistic', 'pvalue')) 

 

 

def ttest_1samp(a, popmean, axis=0): 

""" 

Calculates the T-test for the mean of ONE group of scores. 

 

Parameters 

---------- 

a : array_like 

sample observation 

popmean : float or array_like 

expected value in null hypothesis, if array_like than it must have the 

same shape as `a` excluding the axis dimension 

axis : int or None, optional 

Axis along which to compute test. If None, compute over the whole 

array `a`. 

 

Returns 

------- 

statistic : float or array 

t-statistic 

pvalue : float or array 

two-tailed p-value 

 

Notes 

----- 

For more details on `ttest_1samp`, see `stats.ttest_1samp`. 

 

""" 

a, axis = _chk_asarray(a, axis) 

if a.size == 0: 

return (np.nan, np.nan) 

 

x = a.mean(axis=axis) 

v = a.var(axis=axis, ddof=1) 

n = a.count(axis=axis) 

# force df to be an array for masked division not to throw a warning 

df = ma.asanyarray(n - 1.0) 

svar = ((n - 1.0) * v) / df 

with np.errstate(divide='ignore', invalid='ignore'): 

t = (x - popmean) / ma.sqrt(svar / n) 

prob = special.betainc(0.5*df, 0.5, df/(df + t*t)) 

 

return Ttest_1sampResult(t, prob) 

 

 

ttest_onesamp = ttest_1samp 

 

 

Ttest_indResult = namedtuple('Ttest_indResult', ('statistic', 'pvalue')) 

 

 

def ttest_ind(a, b, axis=0, equal_var=True): 

""" 

Calculates the T-test for the means of TWO INDEPENDENT samples of scores. 

 

Parameters 

---------- 

a, b : array_like 

The arrays must have the same shape, except in the dimension 

corresponding to `axis` (the first, by default). 

axis : int or None, optional 

Axis along which to compute test. If None, compute over the whole 

arrays, `a`, and `b`. 

equal_var : bool, optional 

If True, perform a standard independent 2 sample test that assumes equal 

population variances. 

If False, perform Welch's t-test, which does not assume equal population 

variance. 

.. versionadded:: 0.17.0 

 

Returns 

------- 

statistic : float or array 

The calculated t-statistic. 

pvalue : float or array 

The two-tailed p-value. 

 

Notes 

----- 

For more details on `ttest_ind`, see `stats.ttest_ind`. 

 

""" 

a, b, axis = _chk2_asarray(a, b, axis) 

 

if a.size == 0 or b.size == 0: 

return Ttest_indResult(np.nan, np.nan) 

 

(x1, x2) = (a.mean(axis), b.mean(axis)) 

(v1, v2) = (a.var(axis=axis, ddof=1), b.var(axis=axis, ddof=1)) 

(n1, n2) = (a.count(axis), b.count(axis)) 

 

if equal_var: 

# force df to be an array for masked division not to throw a warning 

df = ma.asanyarray(n1 + n2 - 2.0) 

svar = ((n1-1)*v1+(n2-1)*v2) / df 

denom = ma.sqrt(svar*(1.0/n1 + 1.0/n2)) # n-D computation here! 

else: 

vn1 = v1/n1 

vn2 = v2/n2 

with np.errstate(divide='ignore', invalid='ignore'): 

df = (vn1 + vn2)**2 / (vn1**2 / (n1 - 1) + vn2**2 / (n2 - 1)) 

 

# If df is undefined, variances are zero. 

# It doesn't matter what df is as long as it is not NaN. 

df = np.where(np.isnan(df), 1, df) 

denom = ma.sqrt(vn1 + vn2) 

 

with np.errstate(divide='ignore', invalid='ignore'): 

t = (x1-x2) / denom 

probs = special.betainc(0.5*df, 0.5, df/(df + t*t)).reshape(t.shape) 

 

return Ttest_indResult(t, probs.squeeze()) 

 

 

Ttest_relResult = namedtuple('Ttest_relResult', ('statistic', 'pvalue')) 

 

 

def ttest_rel(a, b, axis=0): 

""" 

Calculates the T-test on TWO RELATED samples of scores, a and b. 

 

Parameters 

---------- 

a, b : array_like 

The arrays must have the same shape. 

axis : int or None, optional 

Axis along which to compute test. If None, compute over the whole 

arrays, `a`, and `b`. 

 

Returns 

------- 

statistic : float or array 

t-statistic 

pvalue : float or array 

two-tailed p-value 

 

Notes 

----- 

For more details on `ttest_rel`, see `stats.ttest_rel`. 

 

""" 

a, b, axis = _chk2_asarray(a, b, axis) 

if len(a) != len(b): 

raise ValueError('unequal length arrays') 

 

if a.size == 0 or b.size == 0: 

return Ttest_relResult(np.nan, np.nan) 

 

n = a.count(axis) 

df = ma.asanyarray(n-1.0) 

d = (a-b).astype('d') 

dm = d.mean(axis) 

v = d.var(axis=axis, ddof=1) 

denom = ma.sqrt(v / n) 

with np.errstate(divide='ignore', invalid='ignore'): 

t = dm / denom 

 

probs = special.betainc(0.5*df, 0.5, df/(df + t*t)).reshape(t.shape).squeeze() 

 

return Ttest_relResult(t, probs) 

 

 

MannwhitneyuResult = namedtuple('MannwhitneyuResult', ('statistic', 

'pvalue')) 

 

 

def mannwhitneyu(x,y, use_continuity=True): 

""" 

Computes the Mann-Whitney statistic 

 

Missing values in `x` and/or `y` are discarded. 

 

Parameters 

---------- 

x : sequence 

Input 

y : sequence 

Input 

use_continuity : {True, False}, optional 

Whether a continuity correction (1/2.) should be taken into account. 

 

Returns 

------- 

statistic : float 

The Mann-Whitney statistics 

pvalue : float 

Approximate p-value assuming a normal distribution. 

 

""" 

x = ma.asarray(x).compressed().view(ndarray) 

y = ma.asarray(y).compressed().view(ndarray) 

ranks = rankdata(np.concatenate([x,y])) 

(nx, ny) = (len(x), len(y)) 

nt = nx + ny 

U = ranks[:nx].sum() - nx*(nx+1)/2. 

U = max(U, nx*ny - U) 

u = nx*ny - U 

 

mu = (nx*ny)/2. 

sigsq = (nt**3 - nt)/12. 

ties = count_tied_groups(ranks) 

sigsq -= sum(v*(k**3-k) for (k,v) in iteritems(ties))/12. 

sigsq *= nx*ny/float(nt*(nt-1)) 

 

if use_continuity: 

z = (U - 1/2. - mu) / ma.sqrt(sigsq) 

else: 

z = (U - mu) / ma.sqrt(sigsq) 

 

prob = special.erfc(abs(z)/np.sqrt(2)) 

return MannwhitneyuResult(u, prob) 

 

 

KruskalResult = namedtuple('KruskalResult', ('statistic', 'pvalue')) 

 

 

def kruskal(*args): 

""" 

Compute the Kruskal-Wallis H-test for independent samples 

 

Parameters 

---------- 

sample1, sample2, ... : array_like 

Two or more arrays with the sample measurements can be given as 

arguments. 

 

Returns 

------- 

statistic : float 

The Kruskal-Wallis H statistic, corrected for ties 

pvalue : float 

The p-value for the test using the assumption that H has a chi 

square distribution 

 

Notes 

----- 

For more details on `kruskal`, see `stats.kruskal`. 

 

""" 

output = argstoarray(*args) 

ranks = ma.masked_equal(rankdata(output, use_missing=False), 0) 

sumrk = ranks.sum(-1) 

ngrp = ranks.count(-1) 

ntot = ranks.count() 

H = 12./(ntot*(ntot+1)) * (sumrk**2/ngrp).sum() - 3*(ntot+1) 

# Tie correction 

ties = count_tied_groups(ranks) 

T = 1. - sum(v*(k**3-k) for (k,v) in iteritems(ties))/float(ntot**3-ntot) 

if T == 0: 

raise ValueError('All numbers are identical in kruskal') 

 

H /= T 

df = len(output) - 1 

prob = distributions.chi2.sf(H, df) 

return KruskalResult(H, prob) 

 

 

kruskalwallis = kruskal 

 

 

def ks_twosamp(data1, data2, alternative="two-sided"): 

""" 

Computes the Kolmogorov-Smirnov test on two samples. 

 

Missing values are discarded. 

 

Parameters 

---------- 

data1 : array_like 

First data set 

data2 : array_like 

Second data set 

alternative : {'two-sided', 'less', 'greater'}, optional 

Indicates the alternative hypothesis. Default is 'two-sided'. 

 

Returns 

------- 

d : float 

Value of the Kolmogorov Smirnov test 

p : float 

Corresponding p-value. 

 

""" 

(data1, data2) = (ma.asarray(data1), ma.asarray(data2)) 

(n1, n2) = (data1.count(), data2.count()) 

n = (n1*n2/float(n1+n2)) 

mix = ma.concatenate((data1.compressed(), data2.compressed())) 

mixsort = mix.argsort(kind='mergesort') 

csum = np.where(mixsort < n1, 1./n1, -1./n2).cumsum() 

# Check for ties 

if len(np.unique(mix)) < (n1+n2): 

csum = csum[np.r_[np.diff(mix[mixsort]).nonzero()[0],-1]] 

 

alternative = str(alternative).lower()[0] 

if alternative == 't': 

d = ma.abs(csum).max() 

prob = special.kolmogorov(np.sqrt(n)*d) 

elif alternative == 'l': 

d = -csum.min() 

prob = np.exp(-2*n*d**2) 

elif alternative == 'g': 

d = csum.max() 

prob = np.exp(-2*n*d**2) 

else: 

raise ValueError("Invalid value for the alternative hypothesis: " 

"should be in 'two-sided', 'less' or 'greater'") 

 

return (d, prob) 

 

 

ks_2samp = ks_twosamp 

 

 

def trima(a, limits=None, inclusive=(True,True)): 

""" 

Trims an array by masking the data outside some given limits. 

 

Returns a masked version of the input array. 

 

Parameters 

---------- 

a : array_like 

Input array. 

limits : {None, tuple}, optional 

Tuple of (lower limit, upper limit) in absolute values. 

Values of the input array lower (greater) than the lower (upper) limit 

will be masked. A limit is None indicates an open interval. 

inclusive : (bool, bool) tuple, optional 

Tuple of (lower flag, upper flag), indicating whether values exactly 

equal to the lower (upper) limit are allowed. 

 

""" 

a = ma.asarray(a) 

a.unshare_mask() 

if (limits is None) or (limits == (None, None)): 

return a 

 

(lower_lim, upper_lim) = limits 

(lower_in, upper_in) = inclusive 

condition = False 

if lower_lim is not None: 

if lower_in: 

condition |= (a < lower_lim) 

else: 

condition |= (a <= lower_lim) 

 

if upper_lim is not None: 

if upper_in: 

condition |= (a > upper_lim) 

else: 

condition |= (a >= upper_lim) 

 

a[condition.filled(True)] = masked 

return a 

 

 

def trimr(a, limits=None, inclusive=(True, True), axis=None): 

""" 

Trims an array by masking some proportion of the data on each end. 

Returns a masked version of the input array. 

 

Parameters 

---------- 

a : sequence 

Input array. 

limits : {None, tuple}, optional 

Tuple of the percentages to cut on each side of the array, with respect 

to the number of unmasked data, as floats between 0. and 1. 

Noting n the number of unmasked data before trimming, the 

(n*limits[0])th smallest data and the (n*limits[1])th largest data are 

masked, and the total number of unmasked data after trimming is 

n*(1.-sum(limits)). The value of one limit can be set to None to 

indicate an open interval. 

inclusive : {(True,True) tuple}, optional 

Tuple of flags indicating whether the number of data being masked on 

the left (right) end should be truncated (True) or rounded (False) to 

integers. 

axis : {None,int}, optional 

Axis along which to trim. If None, the whole array is trimmed, but its 

shape is maintained. 

 

""" 

def _trimr1D(a, low_limit, up_limit, low_inclusive, up_inclusive): 

n = a.count() 

idx = a.argsort() 

if low_limit: 

if low_inclusive: 

lowidx = int(low_limit*n) 

else: 

lowidx = np.round(low_limit*n) 

a[idx[:lowidx]] = masked 

if up_limit is not None: 

if up_inclusive: 

upidx = n - int(n*up_limit) 

else: 

upidx = n - np.round(n*up_limit) 

a[idx[upidx:]] = masked 

return a 

 

a = ma.asarray(a) 

a.unshare_mask() 

if limits is None: 

return a 

 

# Check the limits 

(lolim, uplim) = limits 

errmsg = "The proportion to cut from the %s should be between 0. and 1." 

if lolim is not None: 

if lolim > 1. or lolim < 0: 

raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim) 

if uplim is not None: 

if uplim > 1. or uplim < 0: 

raise ValueError(errmsg % 'end' + "(got %s)" % uplim) 

 

(loinc, upinc) = inclusive 

 

if axis is None: 

shp = a.shape 

return _trimr1D(a.ravel(),lolim,uplim,loinc,upinc).reshape(shp) 

else: 

return ma.apply_along_axis(_trimr1D, axis, a, lolim,uplim,loinc,upinc) 

 

 

trimdoc = """ 

Parameters 

---------- 

a : sequence 

Input array 

limits : {None, tuple}, optional 

If `relative` is False, tuple (lower limit, upper limit) in absolute values. 

Values of the input array lower (greater) than the lower (upper) limit are 

masked. 

 

If `relative` is True, tuple (lower percentage, upper percentage) to cut 

on each side of the array, with respect to the number of unmasked data. 

 

Noting n the number of unmasked data before trimming, the (n*limits[0])th 

smallest data and the (n*limits[1])th largest data are masked, and the 

total number of unmasked data after trimming is n*(1.-sum(limits)) 

In each case, the value of one limit can be set to None to indicate an 

open interval. 

 

If limits is None, no trimming is performed 

inclusive : {(bool, bool) tuple}, optional 

If `relative` is False, tuple indicating whether values exactly equal 

to the absolute limits are allowed. 

If `relative` is True, tuple indicating whether the number of data 

being masked on each side should be rounded (True) or truncated 

(False). 

relative : bool, optional 

Whether to consider the limits as absolute values (False) or proportions 

to cut (True). 

axis : int, optional 

Axis along which to trim. 

""" 

 

 

def trim(a, limits=None, inclusive=(True,True), relative=False, axis=None): 

""" 

Trims an array by masking the data outside some given limits. 

 

Returns a masked version of the input array. 

 

%s 

 

Examples 

-------- 

>>> from scipy.stats.mstats import trim 

>>> z = [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10] 

>>> print(trim(z,(3,8))) 

[-- -- 3 4 5 6 7 8 -- --] 

>>> print(trim(z,(0.1,0.2),relative=True)) 

[-- 2 3 4 5 6 7 8 -- --] 

 

""" 

if relative: 

return trimr(a, limits=limits, inclusive=inclusive, axis=axis) 

else: 

return trima(a, limits=limits, inclusive=inclusive) 

 

 

if trim.__doc__ is not None: 

trim.__doc__ = trim.__doc__ % trimdoc 

 

 

def trimboth(data, proportiontocut=0.2, inclusive=(True,True), axis=None): 

""" 

Trims the smallest and largest data values. 

 

Trims the `data` by masking the ``int(proportiontocut * n)`` smallest and 

``int(proportiontocut * n)`` largest values of data along the given axis, 

where n is the number of unmasked values before trimming. 

 

Parameters 

---------- 

data : ndarray 

Data to trim. 

proportiontocut : float, optional 

Percentage of trimming (as a float between 0 and 1). 

If n is the number of unmasked values before trimming, the number of 

values after trimming is ``(1 - 2*proportiontocut) * n``. 

Default is 0.2. 

inclusive : {(bool, bool) tuple}, optional 

Tuple indicating whether the number of data being masked on each side 

should be rounded (True) or truncated (False). 

axis : int, optional 

Axis along which to perform the trimming. 

If None, the input array is first flattened. 

 

""" 

return trimr(data, limits=(proportiontocut,proportiontocut), 

inclusive=inclusive, axis=axis) 

 

 

def trimtail(data, proportiontocut=0.2, tail='left', inclusive=(True,True), 

axis=None): 

""" 

Trims the data by masking values from one tail. 

 

Parameters 

---------- 

data : array_like 

Data to trim. 

proportiontocut : float, optional 

Percentage of trimming. If n is the number of unmasked values 

before trimming, the number of values after trimming is 

``(1 - proportiontocut) * n``. Default is 0.2. 

tail : {'left','right'}, optional 

If 'left' the `proportiontocut` lowest values will be masked. 

If 'right' the `proportiontocut` highest values will be masked. 

Default is 'left'. 

inclusive : {(bool, bool) tuple}, optional 

Tuple indicating whether the number of data being masked on each side 

should be rounded (True) or truncated (False). Default is 

(True, True). 

axis : int, optional 

Axis along which to perform the trimming. 

If None, the input array is first flattened. Default is None. 

 

Returns 

------- 

trimtail : ndarray 

Returned array of same shape as `data` with masked tail values. 

 

""" 

tail = str(tail).lower()[0] 

if tail == 'l': 

limits = (proportiontocut,None) 

elif tail == 'r': 

limits = (None, proportiontocut) 

else: 

raise TypeError("The tail argument should be in ('left','right')") 

 

return trimr(data, limits=limits, axis=axis, inclusive=inclusive) 

 

 

trim1 = trimtail 

 

 

def trimmed_mean(a, limits=(0.1,0.1), inclusive=(1,1), relative=True, 

axis=None): 

"""Returns the trimmed mean of the data along the given axis. 

 

%s 

 

""" % trimdoc 

if (not isinstance(limits,tuple)) and isinstance(limits,float): 

limits = (limits, limits) 

if relative: 

return trimr(a,limits=limits,inclusive=inclusive,axis=axis).mean(axis=axis) 

else: 

return trima(a,limits=limits,inclusive=inclusive).mean(axis=axis) 

 

 

def trimmed_var(a, limits=(0.1,0.1), inclusive=(1,1), relative=True, 

axis=None, ddof=0): 

"""Returns the trimmed variance of the data along the given axis. 

 

%s 

ddof : {0,integer}, optional 

Means Delta Degrees of Freedom. The denominator used during computations 

is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un- 

biased estimate of the variance. 

 

""" % trimdoc 

if (not isinstance(limits,tuple)) and isinstance(limits,float): 

limits = (limits, limits) 

if relative: 

out = trimr(a,limits=limits, inclusive=inclusive,axis=axis) 

else: 

out = trima(a,limits=limits,inclusive=inclusive) 

 

return out.var(axis=axis, ddof=ddof) 

 

 

def trimmed_std(a, limits=(0.1,0.1), inclusive=(1,1), relative=True, 

axis=None, ddof=0): 

"""Returns the trimmed standard deviation of the data along the given axis. 

 

%s 

ddof : {0,integer}, optional 

Means Delta Degrees of Freedom. The denominator used during computations 

is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un- 

biased estimate of the variance. 

 

""" % trimdoc 

if (not isinstance(limits,tuple)) and isinstance(limits,float): 

limits = (limits, limits) 

if relative: 

out = trimr(a,limits=limits,inclusive=inclusive,axis=axis) 

else: 

out = trima(a,limits=limits,inclusive=inclusive) 

return out.std(axis=axis,ddof=ddof) 

 

 

def trimmed_stde(a, limits=(0.1,0.1), inclusive=(1,1), axis=None): 

""" 

Returns the standard error of the trimmed mean along the given axis. 

 

Parameters 

---------- 

a : sequence 

Input array 

limits : {(0.1,0.1), tuple of float}, optional 

tuple (lower percentage, upper percentage) to cut on each side of the 

array, with respect to the number of unmasked data. 

 

If n is the number of unmasked data before trimming, the values 

smaller than ``n * limits[0]`` and the values larger than 

``n * `limits[1]`` are masked, and the total number of unmasked 

data after trimming is ``n * (1.-sum(limits))``. In each case, 

the value of one limit can be set to None to indicate an open interval. 

If `limits` is None, no trimming is performed. 

inclusive : {(bool, bool) tuple} optional 

Tuple indicating whether the number of data being masked on each side 

should be rounded (True) or truncated (False). 

axis : int, optional 

Axis along which to trim. 

 

Returns 

------- 

trimmed_stde : scalar or ndarray 

 

""" 

def _trimmed_stde_1D(a, low_limit, up_limit, low_inclusive, up_inclusive): 

"Returns the standard error of the trimmed mean for a 1D input data." 

n = a.count() 

idx = a.argsort() 

if low_limit: 

if low_inclusive: 

lowidx = int(low_limit*n) 

else: 

lowidx = np.round(low_limit*n) 

a[idx[:lowidx]] = masked 

if up_limit is not None: 

if up_inclusive: 

upidx = n - int(n*up_limit) 

else: 

upidx = n - np.round(n*up_limit) 

a[idx[upidx:]] = masked 

a[idx[:lowidx]] = a[idx[lowidx]] 

a[idx[upidx:]] = a[idx[upidx-1]] 

winstd = a.std(ddof=1) 

return winstd / ((1-low_limit-up_limit)*np.sqrt(len(a))) 

 

a = ma.array(a, copy=True, subok=True) 

a.unshare_mask() 

if limits is None: 

return a.std(axis=axis,ddof=1)/ma.sqrt(a.count(axis)) 

if (not isinstance(limits,tuple)) and isinstance(limits,float): 

limits = (limits, limits) 

 

# Check the limits 

(lolim, uplim) = limits 

errmsg = "The proportion to cut from the %s should be between 0. and 1." 

if lolim is not None: 

if lolim > 1. or lolim < 0: 

raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim) 

if uplim is not None: 

if uplim > 1. or uplim < 0: 

raise ValueError(errmsg % 'end' + "(got %s)" % uplim) 

 

(loinc, upinc) = inclusive 

if (axis is None): 

return _trimmed_stde_1D(a.ravel(),lolim,uplim,loinc,upinc) 

else: 

if a.ndim > 2: 

raise ValueError("Array 'a' must be at most two dimensional, but got a.ndim = %d" % a.ndim) 

return ma.apply_along_axis(_trimmed_stde_1D, axis, a, 

lolim,uplim,loinc,upinc) 

 

 

def _mask_to_limits(a, limits, inclusive): 

"""Mask an array for values outside of given limits. 

 

This is primarily a utility function. 

 

Parameters 

---------- 

a : array 

limits : (float or None, float or None) 

A tuple consisting of the (lower limit, upper limit). Values in the 

input array less than the lower limit or greater than the upper limit 

will be masked out. None implies no limit. 

inclusive : (bool, bool) 

A tuple consisting of the (lower flag, upper flag). These flags 

determine whether values exactly equal to lower or upper are allowed. 

 

Returns 

------- 

A MaskedArray. 

 

Raises 

------ 

A ValueError if there are no values within the given limits. 

""" 

lower_limit, upper_limit = limits 

lower_include, upper_include = inclusive 

am = ma.MaskedArray(a) 

if lower_limit is not None: 

if lower_include: 

am = ma.masked_less(am, lower_limit) 

else: 

am = ma.masked_less_equal(am, lower_limit) 

 

if upper_limit is not None: 

if upper_include: 

am = ma.masked_greater(am, upper_limit) 

else: 

am = ma.masked_greater_equal(am, upper_limit) 

 

if am.count() == 0: 

raise ValueError("No array values within given limits") 

 

return am 

 

 

def tmean(a, limits=None, inclusive=(True, True), axis=None): 

""" 

Compute the trimmed mean. 

 

Parameters 

---------- 

a : array_like 

Array of values. 

limits : None or (lower limit, upper limit), optional 

Values in the input array less than the lower limit or greater than the 

upper limit will be ignored. When limits is None (default), then all 

values are used. Either of the limit values in the tuple can also be 

None representing a half-open interval. 

inclusive : (bool, bool), optional 

A tuple consisting of the (lower flag, upper flag). These flags 

determine whether values exactly equal to the lower or upper limits 

are included. The default value is (True, True). 

axis : int or None, optional 

Axis along which to operate. If None, compute over the 

whole array. Default is None. 

 

Returns 

------- 

tmean : float 

 

Notes 

----- 

For more details on `tmean`, see `stats.tmean`. 

 

""" 

return trima(a, limits=limits, inclusive=inclusive).mean(axis=axis) 

 

 

def tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1): 

""" 

Compute the trimmed variance 

 

This function computes the sample variance of an array of values, 

while ignoring values which are outside of given `limits`. 

 

Parameters 

---------- 

a : array_like 

Array of values. 

limits : None or (lower limit, upper limit), optional 

Values in the input array less than the lower limit or greater than the 

upper limit will be ignored. When limits is None, then all values are 

used. Either of the limit values in the tuple can also be None 

representing a half-open interval. The default value is None. 

inclusive : (bool, bool), optional 

A tuple consisting of the (lower flag, upper flag). These flags 

determine whether values exactly equal to the lower or upper limits 

are included. The default value is (True, True). 

axis : int or None, optional 

Axis along which to operate. If None, compute over the 

whole array. Default is zero. 

ddof : int, optional 

Delta degrees of freedom. Default is 1. 

 

Returns 

------- 

tvar : float 

Trimmed variance. 

 

Notes 

----- 

For more details on `tvar`, see `stats.tvar`. 

 

""" 

a = a.astype(float).ravel() 

if limits is None: 

n = (~a.mask).sum() # todo: better way to do that? 

return np.ma.var(a) * n/(n-1.) 

am = _mask_to_limits(a, limits=limits, inclusive=inclusive) 

 

return np.ma.var(am, axis=axis, ddof=ddof) 

 

 

def tmin(a, lowerlimit=None, axis=0, inclusive=True): 

""" 

Compute the trimmed minimum 

 

Parameters 

---------- 

a : array_like 

array of values 

lowerlimit : None or float, optional 

Values in the input array less than the given limit will be ignored. 

When lowerlimit is None, then all values are used. The default value 

is None. 

axis : int or None, optional 

Axis along which to operate. Default is 0. If None, compute over the 

whole array `a`. 

inclusive : {True, False}, optional 

This flag determines whether values exactly equal to the lower limit 

are included. The default value is True. 

 

Returns 

------- 

tmin : float, int or ndarray 

 

Notes 

----- 

For more details on `tmin`, see `stats.tmin`. 

 

""" 

a, axis = _chk_asarray(a, axis) 

am = trima(a, (lowerlimit, None), (inclusive, False)) 

return ma.minimum.reduce(am, axis) 

 

 

def tmax(a, upperlimit=None, axis=0, inclusive=True): 

""" 

Compute the trimmed maximum 

 

This function computes the maximum value of an array along a given axis, 

while ignoring values larger than a specified upper limit. 

 

Parameters 

---------- 

a : array_like 

array of values 

upperlimit : None or float, optional 

Values in the input array greater than the given limit will be ignored. 

When upperlimit is None, then all values are used. The default value 

is None. 

axis : int or None, optional 

Axis along which to operate. Default is 0. If None, compute over the 

whole array `a`. 

inclusive : {True, False}, optional 

This flag determines whether values exactly equal to the upper limit 

are included. The default value is True. 

 

Returns 

------- 

tmax : float, int or ndarray 

 

Notes 

----- 

For more details on `tmax`, see `stats.tmax`. 

 

""" 

a, axis = _chk_asarray(a, axis) 

am = trima(a, (None, upperlimit), (False, inclusive)) 

return ma.maximum.reduce(am, axis) 

 

 

def tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1): 

""" 

Compute the trimmed standard error of the mean. 

 

This function finds the standard error of the mean for given 

values, ignoring values outside the given `limits`. 

 

Parameters 

---------- 

a : array_like 

array of values 

limits : None or (lower limit, upper limit), optional 

Values in the input array less than the lower limit or greater than the 

upper limit will be ignored. When limits is None, then all values are 

used. Either of the limit values in the tuple can also be None 

representing a half-open interval. The default value is None. 

inclusive : (bool, bool), optional 

A tuple consisting of the (lower flag, upper flag). These flags 

determine whether values exactly equal to the lower or upper limits 

are included. The default value is (True, True). 

axis : int or None, optional 

Axis along which to operate. If None, compute over the 

whole array. Default is zero. 

ddof : int, optional 

Delta degrees of freedom. Default is 1. 

 

Returns 

------- 

tsem : float 

 

Notes 

----- 

For more details on `tsem`, see `stats.tsem`. 

 

""" 

a = ma.asarray(a).ravel() 

if limits is None: 

n = float(a.count()) 

return a.std(axis=axis, ddof=ddof)/ma.sqrt(n) 

 

am = trima(a.ravel(), limits, inclusive) 

sd = np.sqrt(am.var(axis=axis, ddof=ddof)) 

return sd / np.sqrt(am.count()) 

 

 

def winsorize(a, limits=None, inclusive=(True, True), inplace=False, 

axis=None): 

"""Returns a Winsorized version of the input array. 

 

The (limits[0])th lowest values are set to the (limits[0])th percentile, 

and the (limits[1])th highest values are set to the (1 - limits[1])th 

percentile. 

Masked values are skipped. 

 

 

Parameters 

---------- 

a : sequence 

Input array. 

limits : {None, tuple of float}, optional 

Tuple of the percentages to cut on each side of the array, with respect 

to the number of unmasked data, as floats between 0. and 1. 

Noting n the number of unmasked data before trimming, the 

(n*limits[0])th smallest data and the (n*limits[1])th largest data are 

masked, and the total number of unmasked data after trimming 

is n*(1.-sum(limits)) The value of one limit can be set to None to 

indicate an open interval. 

inclusive : {(True, True) tuple}, optional 

Tuple indicating whether the number of data being masked on each side 

should be truncated (True) or rounded (False). 

inplace : {False, True}, optional 

Whether to winsorize in place (True) or to use a copy (False) 

axis : {None, int}, optional 

Axis along which to trim. If None, the whole array is trimmed, but its 

shape is maintained. 

 

Notes 

----- 

This function is applied to reduce the effect of possibly spurious outliers 

by limiting the extreme values. 

 

""" 

def _winsorize1D(a, low_limit, up_limit, low_include, up_include): 

n = a.count() 

idx = a.argsort() 

if low_limit: 

if low_include: 

lowidx = int(low_limit * n) 

else: 

lowidx = np.round(low_limit * n).astype(int) 

a[idx[:lowidx]] = a[idx[lowidx]] 

if up_limit is not None: 

if up_include: 

upidx = n - int(n * up_limit) 

else: 

upidx = n - np.round(n * up_limit).astype(int) 

a[idx[upidx:]] = a[idx[upidx - 1]] 

return a 

 

# We are going to modify a: better make a copy 

a = ma.array(a, copy=np.logical_not(inplace)) 

 

if limits is None: 

return a 

if (not isinstance(limits, tuple)) and isinstance(limits, float): 

limits = (limits, limits) 

 

# Check the limits 

(lolim, uplim) = limits 

errmsg = "The proportion to cut from the %s should be between 0. and 1." 

if lolim is not None: 

if lolim > 1. or lolim < 0: 

raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim) 

if uplim is not None: 

if uplim > 1. or uplim < 0: 

raise ValueError(errmsg % 'end' + "(got %s)" % uplim) 

 

(loinc, upinc) = inclusive 

 

if axis is None: 

shp = a.shape 

return _winsorize1D(a.ravel(), lolim, uplim, loinc, upinc).reshape(shp) 

else: 

return ma.apply_along_axis(_winsorize1D, axis, a, lolim, uplim, loinc, 

upinc) 

 

 

def moment(a, moment=1, axis=0): 

""" 

Calculates the nth moment about the mean for a sample. 

 

Parameters 

---------- 

a : array_like 

data 

moment : int, optional 

order of central moment that is returned 

axis : int or None, optional 

Axis along which the central moment is computed. Default is 0. 

If None, compute over the whole array `a`. 

 

Returns 

------- 

n-th central moment : ndarray or float 

The appropriate moment along the given axis or over all values if axis 

is None. The denominator for the moment calculation is the number of 

observations, no degrees of freedom correction is done. 

 

Notes 

----- 

For more details about `moment`, see `stats.moment`. 

 

""" 

a, axis = _chk_asarray(a, axis) 

if moment == 1: 

# By definition the first moment about the mean is 0. 

shape = list(a.shape) 

del shape[axis] 

if shape: 

# return an actual array of the appropriate shape 

return np.zeros(shape, dtype=float) 

else: 

# the input was 1D, so return a scalar instead of a rank-0 array 

return np.float64(0.0) 

else: 

# Exponentiation by squares: form exponent sequence 

n_list = [moment] 

current_n = moment 

while current_n > 2: 

if current_n % 2: 

current_n = (current_n-1)/2 

else: 

current_n /= 2 

n_list.append(current_n) 

 

# Starting point for exponentiation by squares 

a_zero_mean = a - ma.expand_dims(a.mean(axis), axis) 

if n_list[-1] == 1: 

s = a_zero_mean.copy() 

else: 

s = a_zero_mean**2 

 

# Perform multiplications 

for n in n_list[-2::-1]: 

s = s**2 

if n % 2: 

s *= a_zero_mean 

return s.mean(axis) 

 

 

def variation(a, axis=0): 

""" 

Computes the coefficient of variation, the ratio of the biased standard 

deviation to the mean. 

 

Parameters 

---------- 

a : array_like 

Input array. 

axis : int or None, optional 

Axis along which to calculate the coefficient of variation. Default 

is 0. If None, compute over the whole array `a`. 

 

Returns 

------- 

variation : ndarray 

The calculated variation along the requested axis. 

 

Notes 

----- 

For more details about `variation`, see `stats.variation`. 

 

""" 

a, axis = _chk_asarray(a, axis) 

return a.std(axis)/a.mean(axis) 

 

 

def skew(a, axis=0, bias=True): 

""" 

Computes the skewness of a data set. 

 

Parameters 

---------- 

a : ndarray 

data 

axis : int or None, optional 

Axis along which skewness is calculated. Default is 0. 

If None, compute over the whole array `a`. 

bias : bool, optional 

If False, then the calculations are corrected for statistical bias. 

 

Returns 

------- 

skewness : ndarray 

The skewness of values along an axis, returning 0 where all values are 

equal. 

 

Notes 

----- 

For more details about `skew`, see `stats.skew`. 

 

""" 

a, axis = _chk_asarray(a,axis) 

n = a.count(axis) 

m2 = moment(a, 2, axis) 

m3 = moment(a, 3, axis) 

olderr = np.seterr(all='ignore') 

try: 

vals = ma.where(m2 == 0, 0, m3 / m2**1.5) 

finally: 

np.seterr(**olderr) 

 

if not bias: 

can_correct = (n > 2) & (m2 > 0) 

if can_correct.any(): 

m2 = np.extract(can_correct, m2) 

m3 = np.extract(can_correct, m3) 

nval = ma.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5 

np.place(vals, can_correct, nval) 

return vals 

 

 

def kurtosis(a, axis=0, fisher=True, bias=True): 

""" 

Computes the kurtosis (Fisher or Pearson) of a dataset. 

 

Kurtosis is the fourth central moment divided by the square of the 

variance. If Fisher's definition is used, then 3.0 is subtracted from 

the result to give 0.0 for a normal distribution. 

 

If bias is False then the kurtosis is calculated using k statistics to 

eliminate bias coming from biased moment estimators 

 

Use `kurtosistest` to see if result is close enough to normal. 

 

Parameters 

---------- 

a : array 

data for which the kurtosis is calculated 

axis : int or None, optional 

Axis along which the kurtosis is calculated. Default is 0. 

If None, compute over the whole array `a`. 

fisher : bool, optional 

If True, Fisher's definition is used (normal ==> 0.0). If False, 

Pearson's definition is used (normal ==> 3.0). 

bias : bool, optional 

If False, then the calculations are corrected for statistical bias. 

 

Returns 

------- 

kurtosis : array 

The kurtosis of values along an axis. If all values are equal, 

return -3 for Fisher's definition and 0 for Pearson's definition. 

 

Notes 

----- 

For more details about `kurtosis`, see `stats.kurtosis`. 

 

""" 

a, axis = _chk_asarray(a, axis) 

m2 = moment(a, 2, axis) 

m4 = moment(a, 4, axis) 

olderr = np.seterr(all='ignore') 

try: 

vals = ma.where(m2 == 0, 0, m4 / m2**2.0) 

finally: 

np.seterr(**olderr) 

 

if not bias: 

n = a.count(axis) 

can_correct = (n > 3) & (m2 is not ma.masked and m2 > 0) 

if can_correct.any(): 

n = np.extract(can_correct, n) 

m2 = np.extract(can_correct, m2) 

m4 = np.extract(can_correct, m4) 

nval = 1.0/(n-2)/(n-3)*((n*n-1.0)*m4/m2**2.0-3*(n-1)**2.0) 

np.place(vals, can_correct, nval+3.0) 

if fisher: 

return vals - 3 

else: 

return vals 

 

 

DescribeResult = namedtuple('DescribeResult', ('nobs', 'minmax', 'mean', 

'variance', 'skewness', 

'kurtosis')) 

 

 

def describe(a, axis=0, ddof=0, bias=True): 

""" 

Computes several descriptive statistics of the passed array. 

 

Parameters 

---------- 

a : array_like 

Data array 

axis : int or None, optional 

Axis along which to calculate statistics. Default 0. If None, 

compute over the whole array `a`. 

ddof : int, optional 

degree of freedom (default 0); note that default ddof is different 

from the same routine in stats.describe 

bias : bool, optional 

If False, then the skewness and kurtosis calculations are corrected for 

statistical bias. 

 

Returns 

------- 

nobs : int 

(size of the data (discarding missing values) 

 

minmax : (int, int) 

min, max 

 

mean : float 

arithmetic mean 

 

variance : float 

unbiased variance 

 

skewness : float 

biased skewness 

 

kurtosis : float 

biased kurtosis 

 

Examples 

-------- 

>>> from scipy.stats.mstats import describe 

>>> ma = np.ma.array(range(6), mask=[0, 0, 0, 1, 1, 1]) 

>>> describe(ma) 

DescribeResult(nobs=3, minmax=(masked_array(data=0, 

mask=False, 

fill_value=999999), masked_array(data=2, 

mask=False, 

fill_value=999999)), mean=1.0, variance=0.6666666666666666, 

skewness=masked_array(data=0., mask=False, fill_value=1e+20), 

kurtosis=-1.5) 

 

""" 

a, axis = _chk_asarray(a, axis) 

n = a.count(axis) 

mm = (ma.minimum.reduce(a), ma.maximum.reduce(a)) 

m = a.mean(axis) 

v = a.var(axis, ddof=ddof) 

sk = skew(a, axis, bias=bias) 

kurt = kurtosis(a, axis, bias=bias) 

 

return DescribeResult(n, mm, m, v, sk, kurt) 

 

 

def stde_median(data, axis=None): 

"""Returns the McKean-Schrader estimate of the standard error of the sample 

median along the given axis. masked values are discarded. 

 

Parameters 

---------- 

data : ndarray 

Data to trim. 

axis : {None,int}, optional 

Axis along which to perform the trimming. 

If None, the input array is first flattened. 

 

""" 

def _stdemed_1D(data): 

data = np.sort(data.compressed()) 

n = len(data) 

z = 2.5758293035489004 

k = int(np.round((n+1)/2. - z * np.sqrt(n/4.),0)) 

return ((data[n-k] - data[k-1])/(2.*z)) 

 

data = ma.array(data, copy=False, subok=True) 

if (axis is None): 

return _stdemed_1D(data) 

else: 

if data.ndim > 2: 

raise ValueError("Array 'data' must be at most two dimensional, " 

"but got data.ndim = %d" % data.ndim) 

return ma.apply_along_axis(_stdemed_1D, axis, data) 

 

 

SkewtestResult = namedtuple('SkewtestResult', ('statistic', 'pvalue')) 

 

 

def skewtest(a, axis=0): 

""" 

Tests whether the skew is different from the normal distribution. 

 

Parameters 

---------- 

a : array 

The data to be tested 

axis : int or None, optional 

Axis along which statistics are calculated. Default is 0. 

If None, compute over the whole array `a`. 

 

Returns 

------- 

statistic : float 

The computed z-score for this test. 

pvalue : float 

a 2-sided p-value for the hypothesis test 

 

Notes 

----- 

For more details about `skewtest`, see `stats.skewtest`. 

 

""" 

a, axis = _chk_asarray(a, axis) 

if axis is None: 

a = a.ravel() 

axis = 0 

b2 = skew(a,axis) 

n = a.count(axis) 

if np.min(n) < 8: 

raise ValueError( 

"skewtest is not valid with less than 8 samples; %i samples" 

" were given." % np.min(n)) 

 

y = b2 * ma.sqrt(((n+1)*(n+3)) / (6.0*(n-2))) 

beta2 = (3.0*(n*n+27*n-70)*(n+1)*(n+3)) / ((n-2.0)*(n+5)*(n+7)*(n+9)) 

W2 = -1 + ma.sqrt(2*(beta2-1)) 

delta = 1/ma.sqrt(0.5*ma.log(W2)) 

alpha = ma.sqrt(2.0/(W2-1)) 

y = ma.where(y == 0, 1, y) 

Z = delta*ma.log(y/alpha + ma.sqrt((y/alpha)**2+1)) 

 

return SkewtestResult(Z, 2 * distributions.norm.sf(np.abs(Z))) 

 

 

KurtosistestResult = namedtuple('KurtosistestResult', ('statistic', 

'pvalue')) 

 

 

def kurtosistest(a, axis=0): 

""" 

Tests whether a dataset has normal kurtosis 

 

Parameters 

---------- 

a : array 

array of the sample data 

axis : int or None, optional 

Axis along which to compute test. Default is 0. If None, 

compute over the whole array `a`. 

 

Returns 

------- 

statistic : float 

The computed z-score for this test. 

pvalue : float 

The 2-sided p-value for the hypothesis test 

 

Notes 

----- 

For more details about `kurtosistest`, see `stats.kurtosistest`. 

 

""" 

a, axis = _chk_asarray(a, axis) 

n = a.count(axis=axis) 

if np.min(n) < 5: 

raise ValueError( 

"kurtosistest requires at least 5 observations; %i observations" 

" were given." % np.min(n)) 

if np.min(n) < 20: 

warnings.warn( 

"kurtosistest only valid for n>=20 ... continuing anyway, n=%i" % 

np.min(n)) 

 

b2 = kurtosis(a, axis, fisher=False) 

E = 3.0*(n-1) / (n+1) 

varb2 = 24.0*n*(n-2.)*(n-3) / ((n+1)*(n+1.)*(n+3)*(n+5)) 

x = (b2-E)/ma.sqrt(varb2) 

sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) / 

(n*(n-2)*(n-3))) 

A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2))) 

term1 = 1 - 2./(9.0*A) 

denom = 1 + x*ma.sqrt(2/(A-4.0)) 

if np.ma.isMaskedArray(denom): 

# For multi-dimensional array input 

denom[denom < 0] = masked 

elif denom < 0: 

denom = masked 

 

term2 = ma.power((1-2.0/A)/denom,1/3.0) 

Z = (term1 - term2) / np.sqrt(2/(9.0*A)) 

 

return KurtosistestResult(Z, 2 * distributions.norm.sf(np.abs(Z))) 

 

 

NormaltestResult = namedtuple('NormaltestResult', ('statistic', 'pvalue')) 

 

 

def normaltest(a, axis=0): 

""" 

Tests whether a sample differs from a normal distribution. 

 

Parameters 

---------- 

a : array_like 

The array containing the data to be tested. 

axis : int or None, optional 

Axis along which to compute test. Default is 0. If None, 

compute over the whole array `a`. 

 

Returns 

------- 

statistic : float or array 

``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and 

``k`` is the z-score returned by `kurtosistest`. 

pvalue : float or array 

A 2-sided chi squared probability for the hypothesis test. 

 

Notes 

----- 

For more details about `normaltest`, see `stats.normaltest`. 

 

""" 

a, axis = _chk_asarray(a, axis) 

s, _ = skewtest(a, axis) 

k, _ = kurtosistest(a, axis) 

k2 = s*s + k*k 

 

return NormaltestResult(k2, distributions.chi2.sf(k2, 2)) 

 

 

def mquantiles(a, prob=list([.25,.5,.75]), alphap=.4, betap=.4, axis=None, 

limit=()): 

""" 

Computes empirical quantiles for a data array. 

 

Samples quantile are defined by ``Q(p) = (1-gamma)*x[j] + gamma*x[j+1]``, 

where ``x[j]`` is the j-th order statistic, and gamma is a function of 

``j = floor(n*p + m)``, ``m = alphap + p*(1 - alphap - betap)`` and 

``g = n*p + m - j``. 

 

Reinterpreting the above equations to compare to **R** lead to the 

equation: ``p(k) = (k - alphap)/(n + 1 - alphap - betap)`` 

 

Typical values of (alphap,betap) are: 

- (0,1) : ``p(k) = k/n`` : linear interpolation of cdf 

(**R** type 4) 

- (.5,.5) : ``p(k) = (k - 1/2.)/n`` : piecewise linear function 

(**R** type 5) 

- (0,0) : ``p(k) = k/(n+1)`` : 

(**R** type 6) 

- (1,1) : ``p(k) = (k-1)/(n-1)``: p(k) = mode[F(x[k])]. 

(**R** type 7, **R** default) 

- (1/3,1/3): ``p(k) = (k-1/3)/(n+1/3)``: Then p(k) ~ median[F(x[k])]. 

The resulting quantile estimates are approximately median-unbiased 

regardless of the distribution of x. 

(**R** type 8) 

- (3/8,3/8): ``p(k) = (k-3/8)/(n+1/4)``: Blom. 

The resulting quantile estimates are approximately unbiased 

if x is normally distributed 

(**R** type 9) 

- (.4,.4) : approximately quantile unbiased (Cunnane) 

- (.35,.35): APL, used with PWM 

 

Parameters 

---------- 

a : array_like 

Input data, as a sequence or array of dimension at most 2. 

prob : array_like, optional 

List of quantiles to compute. 

alphap : float, optional 

Plotting positions parameter, default is 0.4. 

betap : float, optional 

Plotting positions parameter, default is 0.4. 

axis : int, optional 

Axis along which to perform the trimming. 

If None (default), the input array is first flattened. 

limit : tuple, optional 

Tuple of (lower, upper) values. 

Values of `a` outside this open interval are ignored. 

 

Returns 

------- 

mquantiles : MaskedArray 

An array containing the calculated quantiles. 

 

Notes 

----- 

This formulation is very similar to **R** except the calculation of 

``m`` from ``alphap`` and ``betap``, where in **R** ``m`` is defined 

with each type. 

 

References 

---------- 

.. [1] *R* statistical software: http://www.r-project.org/ 

.. [2] *R* ``quantile`` function: 

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html 

 

Examples 

-------- 

>>> from scipy.stats.mstats import mquantiles 

>>> a = np.array([6., 47., 49., 15., 42., 41., 7., 39., 43., 40., 36.]) 

>>> mquantiles(a) 

array([ 19.2, 40. , 42.8]) 

 

Using a 2D array, specifying axis and limit. 

 

>>> data = np.array([[ 6., 7., 1.], 

... [ 47., 15., 2.], 

... [ 49., 36., 3.], 

... [ 15., 39., 4.], 

... [ 42., 40., -999.], 

... [ 41., 41., -999.], 

... [ 7., -999., -999.], 

... [ 39., -999., -999.], 

... [ 43., -999., -999.], 

... [ 40., -999., -999.], 

... [ 36., -999., -999.]]) 

>>> print(mquantiles(data, axis=0, limit=(0, 50))) 

[[19.2 14.6 1.45] 

[40. 37.5 2.5 ] 

[42.8 40.05 3.55]] 

 

>>> data[:, 2] = -999. 

>>> print(mquantiles(data, axis=0, limit=(0, 50))) 

[[19.200000000000003 14.6 --] 

[40.0 37.5 --] 

[42.800000000000004 40.05 --]] 

 

""" 

def _quantiles1D(data,m,p): 

x = np.sort(data.compressed()) 

n = len(x) 

if n == 0: 

return ma.array(np.empty(len(p), dtype=float), mask=True) 

elif n == 1: 

return ma.array(np.resize(x, p.shape), mask=nomask) 

aleph = (n*p + m) 

k = np.floor(aleph.clip(1, n-1)).astype(int) 

gamma = (aleph-k).clip(0,1) 

return (1.-gamma)*x[(k-1).tolist()] + gamma*x[k.tolist()] 

 

data = ma.array(a, copy=False) 

if data.ndim > 2: 

raise TypeError("Array should be 2D at most !") 

 

if limit: 

condition = (limit[0] < data) & (data < limit[1]) 

data[~condition.filled(True)] = masked 

 

p = np.array(prob, copy=False, ndmin=1) 

m = alphap + p*(1.-alphap-betap) 

# Computes quantiles along axis (or globally) 

if (axis is None): 

return _quantiles1D(data, m, p) 

 

return ma.apply_along_axis(_quantiles1D, axis, data, m, p) 

 

 

def scoreatpercentile(data, per, limit=(), alphap=.4, betap=.4): 

"""Calculate the score at the given 'per' percentile of the 

sequence a. For example, the score at per=50 is the median. 

 

This function is a shortcut to mquantile 

 

""" 

if (per < 0) or (per > 100.): 

raise ValueError("The percentile should be between 0. and 100. !" 

" (got %s)" % per) 

 

return mquantiles(data, prob=[per/100.], alphap=alphap, betap=betap, 

limit=limit, axis=0).squeeze() 

 

 

def plotting_positions(data, alpha=0.4, beta=0.4): 

""" 

Returns plotting positions (or empirical percentile points) for the data. 

 

Plotting positions are defined as ``(i-alpha)/(n+1-alpha-beta)``, where: 

- i is the rank order statistics 

- n is the number of unmasked values along the given axis 

- `alpha` and `beta` are two parameters. 

 

Typical values for `alpha` and `beta` are: 

- (0,1) : ``p(k) = k/n``, linear interpolation of cdf (R, type 4) 

- (.5,.5) : ``p(k) = (k-1/2.)/n``, piecewise linear function 

(R, type 5) 

- (0,0) : ``p(k) = k/(n+1)``, Weibull (R type 6) 

- (1,1) : ``p(k) = (k-1)/(n-1)``, in this case, 

``p(k) = mode[F(x[k])]``. That's R default (R type 7) 

- (1/3,1/3): ``p(k) = (k-1/3)/(n+1/3)``, then 

``p(k) ~ median[F(x[k])]``. 

The resulting quantile estimates are approximately median-unbiased 

regardless of the distribution of x. (R type 8) 

- (3/8,3/8): ``p(k) = (k-3/8)/(n+1/4)``, Blom. 

The resulting quantile estimates are approximately unbiased 

if x is normally distributed (R type 9) 

- (.4,.4) : approximately quantile unbiased (Cunnane) 

- (.35,.35): APL, used with PWM 

- (.3175, .3175): used in scipy.stats.probplot 

 

Parameters 

---------- 

data : array_like 

Input data, as a sequence or array of dimension at most 2. 

alpha : float, optional 

Plotting positions parameter. Default is 0.4. 

beta : float, optional 

Plotting positions parameter. Default is 0.4. 

 

Returns 

------- 

positions : MaskedArray 

The calculated plotting positions. 

 

""" 

data = ma.array(data, copy=False).reshape(1,-1) 

n = data.count() 

plpos = np.empty(data.size, dtype=float) 

plpos[n:] = 0 

plpos[data.argsort(axis=None)[:n]] = ((np.arange(1, n+1) - alpha) / 

(n + 1.0 - alpha - beta)) 

return ma.array(plpos, mask=data._mask) 

 

 

meppf = plotting_positions 

 

 

def obrientransform(*args): 

""" 

Computes a transform on input data (any number of columns). Used to 

test for homogeneity of variance prior to running one-way stats. Each 

array in ``*args`` is one level of a factor. If an `f_oneway()` run on 

the transformed data and found significant, variances are unequal. From 

Maxwell and Delaney, p.112. 

 

Returns: transformed data for use in an ANOVA 

""" 

data = argstoarray(*args).T 

v = data.var(axis=0,ddof=1) 

m = data.mean(0) 

n = data.count(0).astype(float) 

# result = ((N-1.5)*N*(a-m)**2 - 0.5*v*(n-1))/((n-1)*(n-2)) 

data -= m 

data **= 2 

data *= (n-1.5)*n 

data -= 0.5*v*(n-1) 

data /= (n-1.)*(n-2.) 

if not ma.allclose(v,data.mean(0)): 

raise ValueError("Lack of convergence in obrientransform.") 

 

return data 

 

 

def sem(a, axis=0, ddof=1): 

""" 

Calculates the standard error of the mean of the input array. 

 

Also sometimes called standard error of measurement. 

 

Parameters 

---------- 

a : array_like 

An array containing the values for which the standard error is 

returned. 

axis : int or None, optional 

If axis is None, ravel `a` first. If axis is an integer, this will be 

the axis over which to operate. Defaults to 0. 

ddof : int, optional 

Delta degrees-of-freedom. How many degrees of freedom to adjust 

for bias in limited samples relative to the population estimate 

of variance. Defaults to 1. 

 

Returns 

------- 

s : ndarray or float 

The standard error of the mean in the sample(s), along the input axis. 

 

Notes 

----- 

The default value for `ddof` changed in scipy 0.15.0 to be consistent with 

`stats.sem` as well as with the most common definition used (like in the R 

documentation). 

 

Examples 

-------- 

Find standard error along the first axis: 

 

>>> from scipy import stats 

>>> a = np.arange(20).reshape(5,4) 

>>> print(stats.mstats.sem(a)) 

[2.8284271247461903 2.8284271247461903 2.8284271247461903 

2.8284271247461903] 

 

Find standard error across the whole array, using n degrees of freedom: 

 

>>> print(stats.mstats.sem(a, axis=None, ddof=0)) 

1.2893796958227628 

 

""" 

a, axis = _chk_asarray(a, axis) 

n = a.count(axis=axis) 

s = a.std(axis=axis, ddof=ddof) / ma.sqrt(n) 

return s 

 

 

F_onewayResult = namedtuple('F_onewayResult', ('statistic', 'pvalue')) 

 

 

def f_oneway(*args): 

""" 

Performs a 1-way ANOVA, returning an F-value and probability given 

any number of groups. From Heiman, pp.394-7. 

 

Usage: ``f_oneway(*args)``, where ``*args`` is 2 or more arrays, 

one per treatment group. 

 

Returns 

------- 

statistic : float 

The computed F-value of the test. 

pvalue : float 

The associated p-value from the F-distribution. 

 

""" 

# Construct a single array of arguments: each row is a group 

data = argstoarray(*args) 

ngroups = len(data) 

ntot = data.count() 

sstot = (data**2).sum() - (data.sum())**2/float(ntot) 

ssbg = (data.count(-1) * (data.mean(-1)-data.mean())**2).sum() 

sswg = sstot-ssbg 

dfbg = ngroups-1 

dfwg = ntot - ngroups 

msb = ssbg/float(dfbg) 

msw = sswg/float(dfwg) 

f = msb/msw 

prob = special.fdtrc(dfbg, dfwg, f) # equivalent to stats.f.sf 

 

return F_onewayResult(f, prob) 

 

 

FriedmanchisquareResult = namedtuple('FriedmanchisquareResult', 

('statistic', 'pvalue')) 

 

 

def friedmanchisquare(*args): 

"""Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA. 

This function calculates the Friedman Chi-square test for repeated measures 

and returns the result, along with the associated probability value. 

 

Each input is considered a given group. Ideally, the number of treatments 

among each group should be equal. If this is not the case, only the first 

n treatments are taken into account, where n is the number of treatments 

of the smallest group. 

If a group has some missing values, the corresponding treatments are masked 

in the other groups. 

The test statistic is corrected for ties. 

 

Masked values in one group are propagated to the other groups. 

 

Returns 

------- 

statistic : float 

the test statistic. 

pvalue : float 

the associated p-value. 

 

""" 

data = argstoarray(*args).astype(float) 

k = len(data) 

if k < 3: 

raise ValueError("Less than 3 groups (%i): " % k + 

"the Friedman test is NOT appropriate.") 

 

ranked = ma.masked_values(rankdata(data, axis=0), 0) 

if ranked._mask is not nomask: 

ranked = ma.mask_cols(ranked) 

ranked = ranked.compressed().reshape(k,-1).view(ndarray) 

else: 

ranked = ranked._data 

(k,n) = ranked.shape 

# Ties correction 

repeats = [find_repeats(row) for row in ranked.T] 

ties = np.array([y for x, y in repeats if x.size > 0]) 

tie_correction = 1 - (ties**3-ties).sum()/float(n*(k**3-k)) 

 

ssbg = np.sum((ranked.sum(-1) - n*(k+1)/2.)**2) 

chisq = ssbg * 12./(n*k*(k+1)) * 1./tie_correction 

 

return FriedmanchisquareResult(chisq, 

distributions.chi2.sf(chisq, k-1))