1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

""" 

Additional statistics functions with support for masked arrays. 

 

""" 

 

# Original author (2007): Pierre GF Gerard-Marchant 

 

 

from __future__ import division, print_function, absolute_import 

 

 

__all__ = ['compare_medians_ms', 

'hdquantiles', 'hdmedian', 'hdquantiles_sd', 

'idealfourths', 

'median_cihs','mjci','mquantiles_cimj', 

'rsh', 

'trimmed_mean_ci',] 

 

 

import numpy as np 

from numpy import float_, int_, ndarray 

 

import numpy.ma as ma 

from numpy.ma import MaskedArray 

 

from . import mstats_basic as mstats 

 

from scipy.stats.distributions import norm, beta, t, binom 

 

 

def hdquantiles(data, prob=list([.25,.5,.75]), axis=None, var=False,): 

""" 

Computes quantile estimates with the Harrell-Davis method. 

 

The quantile estimates are calculated as a weighted linear combination 

of order statistics. 

 

Parameters 

---------- 

data : array_like 

Data array. 

prob : sequence, optional 

Sequence of quantiles to compute. 

axis : int or None, optional 

Axis along which to compute the quantiles. If None, use a flattened 

array. 

var : bool, optional 

Whether to return the variance of the estimate. 

 

Returns 

------- 

hdquantiles : MaskedArray 

A (p,) array of quantiles (if `var` is False), or a (2,p) array of 

quantiles and variances (if `var` is True), where ``p`` is the 

number of quantiles. 

 

See Also 

-------- 

hdquantiles_sd 

 

""" 

def _hd_1D(data,prob,var): 

"Computes the HD quantiles for a 1D array. Returns nan for invalid data." 

xsorted = np.squeeze(np.sort(data.compressed().view(ndarray))) 

# Don't use length here, in case we have a numpy scalar 

n = xsorted.size 

 

hd = np.empty((2,len(prob)), float_) 

if n < 2: 

hd.flat = np.nan 

if var: 

return hd 

return hd[0] 

 

v = np.arange(n+1) / float(n) 

betacdf = beta.cdf 

for (i,p) in enumerate(prob): 

_w = betacdf(v, (n+1)*p, (n+1)*(1-p)) 

w = _w[1:] - _w[:-1] 

hd_mean = np.dot(w, xsorted) 

hd[0,i] = hd_mean 

# 

hd[1,i] = np.dot(w, (xsorted-hd_mean)**2) 

# 

hd[0, prob == 0] = xsorted[0] 

hd[0, prob == 1] = xsorted[-1] 

if var: 

hd[1, prob == 0] = hd[1, prob == 1] = np.nan 

return hd 

return hd[0] 

# Initialization & checks 

data = ma.array(data, copy=False, dtype=float_) 

p = np.array(prob, copy=False, ndmin=1) 

# Computes quantiles along axis (or globally) 

if (axis is None) or (data.ndim == 1): 

result = _hd_1D(data, p, var) 

else: 

if data.ndim > 2: 

raise ValueError("Array 'data' must be at most two dimensional, " 

"but got data.ndim = %d" % data.ndim) 

result = ma.apply_along_axis(_hd_1D, axis, data, p, var) 

 

return ma.fix_invalid(result, copy=False) 

 

 

def hdmedian(data, axis=-1, var=False): 

""" 

Returns the Harrell-Davis estimate of the median along the given axis. 

 

Parameters 

---------- 

data : ndarray 

Data array. 

axis : int, optional 

Axis along which to compute the quantiles. If None, use a flattened 

array. 

var : bool, optional 

Whether to return the variance of the estimate. 

 

Returns 

------- 

hdmedian : MaskedArray 

The median values. If ``var=True``, the variance is returned inside 

the masked array. E.g. for a 1-D array the shape change from (1,) to 

(2,). 

 

""" 

result = hdquantiles(data,[0.5], axis=axis, var=var) 

return result.squeeze() 

 

 

def hdquantiles_sd(data, prob=list([.25,.5,.75]), axis=None): 

""" 

The standard error of the Harrell-Davis quantile estimates by jackknife. 

 

Parameters 

---------- 

data : array_like 

Data array. 

prob : sequence, optional 

Sequence of quantiles to compute. 

axis : int, optional 

Axis along which to compute the quantiles. If None, use a flattened 

array. 

 

Returns 

------- 

hdquantiles_sd : MaskedArray 

Standard error of the Harrell-Davis quantile estimates. 

 

See Also 

-------- 

hdquantiles 

 

""" 

def _hdsd_1D(data, prob): 

"Computes the std error for 1D arrays." 

xsorted = np.sort(data.compressed()) 

n = len(xsorted) 

 

hdsd = np.empty(len(prob), float_) 

if n < 2: 

hdsd.flat = np.nan 

 

vv = np.arange(n) / float(n-1) 

betacdf = beta.cdf 

 

for (i,p) in enumerate(prob): 

_w = betacdf(vv, (n+1)*p, (n+1)*(1-p)) 

w = _w[1:] - _w[:-1] 

mx_ = np.fromiter([np.dot(w,xsorted[np.r_[list(range(0,k)), 

list(range(k+1,n))].astype(int_)]) 

for k in range(n)], dtype=float_) 

mx_var = np.array(mx_.var(), copy=False, ndmin=1) * n / float(n-1) 

hdsd[i] = float(n-1) * np.sqrt(np.diag(mx_var).diagonal() / float(n)) 

return hdsd 

 

# Initialization & checks 

data = ma.array(data, copy=False, dtype=float_) 

p = np.array(prob, copy=False, ndmin=1) 

# Computes quantiles along axis (or globally) 

if (axis is None): 

result = _hdsd_1D(data, p) 

else: 

if data.ndim > 2: 

raise ValueError("Array 'data' must be at most two dimensional, " 

"but got data.ndim = %d" % data.ndim) 

result = ma.apply_along_axis(_hdsd_1D, axis, data, p) 

 

return ma.fix_invalid(result, copy=False).ravel() 

 

 

def trimmed_mean_ci(data, limits=(0.2,0.2), inclusive=(True,True), 

alpha=0.05, axis=None): 

""" 

Selected confidence interval of the trimmed mean along the given axis. 

 

Parameters 

---------- 

data : array_like 

Input data. 

limits : {None, tuple}, optional 

None or a two item tuple. 

Tuple of the percentages to cut on each side of the array, with respect 

to the number of unmasked data, as floats between 0. and 1. If ``n`` 

is the number of unmasked data before trimming, then 

(``n * limits[0]``)th smallest data and (``n * limits[1]``)th 

largest data are masked. The total number of unmasked data after 

trimming is ``n * (1. - sum(limits))``. 

The value of one limit can be set to None to indicate an open interval. 

 

Defaults to (0.2, 0.2). 

inclusive : (2,) tuple of boolean, optional 

If relative==False, tuple indicating whether values exactly equal to 

the absolute limits are allowed. 

If relative==True, tuple indicating whether the number of data being 

masked on each side should be rounded (True) or truncated (False). 

 

Defaults to (True, True). 

alpha : float, optional 

Confidence level of the intervals. 

 

Defaults to 0.05. 

axis : int, optional 

Axis along which to cut. If None, uses a flattened version of `data`. 

 

Defaults to None. 

 

Returns 

------- 

trimmed_mean_ci : (2,) ndarray 

The lower and upper confidence intervals of the trimmed data. 

 

""" 

data = ma.array(data, copy=False) 

trimmed = mstats.trimr(data, limits=limits, inclusive=inclusive, axis=axis) 

tmean = trimmed.mean(axis) 

tstde = mstats.trimmed_stde(data,limits=limits,inclusive=inclusive,axis=axis) 

df = trimmed.count(axis) - 1 

tppf = t.ppf(1-alpha/2.,df) 

return np.array((tmean - tppf*tstde, tmean+tppf*tstde)) 

 

 

def mjci(data, prob=[0.25,0.5,0.75], axis=None): 

""" 

Returns the Maritz-Jarrett estimators of the standard error of selected 

experimental quantiles of the data. 

 

Parameters 

---------- 

data : ndarray 

Data array. 

prob : sequence, optional 

Sequence of quantiles to compute. 

axis : int or None, optional 

Axis along which to compute the quantiles. If None, use a flattened 

array. 

 

""" 

def _mjci_1D(data, p): 

data = np.sort(data.compressed()) 

n = data.size 

prob = (np.array(p) * n + 0.5).astype(int_) 

betacdf = beta.cdf 

 

mj = np.empty(len(prob), float_) 

x = np.arange(1,n+1, dtype=float_) / n 

y = x - 1./n 

for (i,m) in enumerate(prob): 

W = betacdf(x,m-1,n-m) - betacdf(y,m-1,n-m) 

C1 = np.dot(W,data) 

C2 = np.dot(W,data**2) 

mj[i] = np.sqrt(C2 - C1**2) 

return mj 

 

data = ma.array(data, copy=False) 

if data.ndim > 2: 

raise ValueError("Array 'data' must be at most two dimensional, " 

"but got data.ndim = %d" % data.ndim) 

 

p = np.array(prob, copy=False, ndmin=1) 

# Computes quantiles along axis (or globally) 

if (axis is None): 

return _mjci_1D(data, p) 

else: 

return ma.apply_along_axis(_mjci_1D, axis, data, p) 

 

 

def mquantiles_cimj(data, prob=[0.25,0.50,0.75], alpha=0.05, axis=None): 

""" 

Computes the alpha confidence interval for the selected quantiles of the 

data, with Maritz-Jarrett estimators. 

 

Parameters 

---------- 

data : ndarray 

Data array. 

prob : sequence, optional 

Sequence of quantiles to compute. 

alpha : float, optional 

Confidence level of the intervals. 

axis : int or None, optional 

Axis along which to compute the quantiles. 

If None, use a flattened array. 

 

Returns 

------- 

ci_lower : ndarray 

The lower boundaries of the confidence interval. Of the same length as 

`prob`. 

ci_upper : ndarray 

The upper boundaries of the confidence interval. Of the same length as 

`prob`. 

 

""" 

alpha = min(alpha, 1 - alpha) 

z = norm.ppf(1 - alpha/2.) 

xq = mstats.mquantiles(data, prob, alphap=0, betap=0, axis=axis) 

smj = mjci(data, prob, axis=axis) 

return (xq - z * smj, xq + z * smj) 

 

 

def median_cihs(data, alpha=0.05, axis=None): 

""" 

Computes the alpha-level confidence interval for the median of the data. 

 

Uses the Hettmasperger-Sheather method. 

 

Parameters 

---------- 

data : array_like 

Input data. Masked values are discarded. The input should be 1D only, 

or `axis` should be set to None. 

alpha : float, optional 

Confidence level of the intervals. 

axis : int or None, optional 

Axis along which to compute the quantiles. If None, use a flattened 

array. 

 

Returns 

------- 

median_cihs 

Alpha level confidence interval. 

 

""" 

def _cihs_1D(data, alpha): 

data = np.sort(data.compressed()) 

n = len(data) 

alpha = min(alpha, 1-alpha) 

k = int(binom._ppf(alpha/2., n, 0.5)) 

gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5) 

if gk < 1-alpha: 

k -= 1 

gk = binom.cdf(n-k,n,0.5) - binom.cdf(k-1,n,0.5) 

gkk = binom.cdf(n-k-1,n,0.5) - binom.cdf(k,n,0.5) 

I = (gk - 1 + alpha)/(gk - gkk) 

lambd = (n-k) * I / float(k + (n-2*k)*I) 

lims = (lambd*data[k] + (1-lambd)*data[k-1], 

lambd*data[n-k-1] + (1-lambd)*data[n-k]) 

return lims 

data = ma.array(data, copy=False) 

# Computes quantiles along axis (or globally) 

if (axis is None): 

result = _cihs_1D(data, alpha) 

else: 

if data.ndim > 2: 

raise ValueError("Array 'data' must be at most two dimensional, " 

"but got data.ndim = %d" % data.ndim) 

result = ma.apply_along_axis(_cihs_1D, axis, data, alpha) 

 

return result 

 

 

def compare_medians_ms(group_1, group_2, axis=None): 

""" 

Compares the medians from two independent groups along the given axis. 

 

The comparison is performed using the McKean-Schrader estimate of the 

standard error of the medians. 

 

Parameters 

---------- 

group_1 : array_like 

First dataset. Has to be of size >=7. 

group_2 : array_like 

Second dataset. Has to be of size >=7. 

axis : int, optional 

Axis along which the medians are estimated. If None, the arrays are 

flattened. If `axis` is not None, then `group_1` and `group_2` 

should have the same shape. 

 

Returns 

------- 

compare_medians_ms : {float, ndarray} 

If `axis` is None, then returns a float, otherwise returns a 1-D 

ndarray of floats with a length equal to the length of `group_1` 

along `axis`. 

 

""" 

(med_1, med_2) = (ma.median(group_1,axis=axis), ma.median(group_2,axis=axis)) 

(std_1, std_2) = (mstats.stde_median(group_1, axis=axis), 

mstats.stde_median(group_2, axis=axis)) 

W = np.abs(med_1 - med_2) / ma.sqrt(std_1**2 + std_2**2) 

return 1 - norm.cdf(W) 

 

 

def idealfourths(data, axis=None): 

""" 

Returns an estimate of the lower and upper quartiles. 

 

Uses the ideal fourths algorithm. 

 

Parameters 

---------- 

data : array_like 

Input array. 

axis : int, optional 

Axis along which the quartiles are estimated. If None, the arrays are 

flattened. 

 

Returns 

------- 

idealfourths : {list of floats, masked array} 

Returns the two internal values that divide `data` into four parts 

using the ideal fourths algorithm either along the flattened array 

(if `axis` is None) or along `axis` of `data`. 

 

""" 

def _idf(data): 

x = data.compressed() 

n = len(x) 

if n < 3: 

return [np.nan,np.nan] 

(j,h) = divmod(n/4. + 5/12.,1) 

j = int(j) 

qlo = (1-h)*x[j-1] + h*x[j] 

k = n - j 

qup = (1-h)*x[k] + h*x[k-1] 

return [qlo, qup] 

data = ma.sort(data, axis=axis).view(MaskedArray) 

if (axis is None): 

return _idf(data) 

else: 

return ma.apply_along_axis(_idf, axis, data) 

 

 

def rsh(data, points=None): 

""" 

Evaluates Rosenblatt's shifted histogram estimators for each data point. 

 

Rosenblatt's estimator is a centered finite-difference approximation to the 

derivative of the empirical cumulative distribution function. 

 

Parameters 

---------- 

data : sequence 

Input data, should be 1-D. Masked values are ignored. 

points : sequence or None, optional 

Sequence of points where to evaluate Rosenblatt shifted histogram. 

If None, use the data. 

 

""" 

data = ma.array(data, copy=False) 

if points is None: 

points = data 

else: 

points = np.array(points, copy=False, ndmin=1) 

 

if data.ndim != 1: 

raise AttributeError("The input array should be 1D only !") 

 

n = data.count() 

r = idealfourths(data, axis=None) 

h = 1.2 * (r[-1]-r[0]) / n**(1./5) 

nhi = (data[:,None] <= points[None,:] + h).sum(0) 

nlo = (data[:,None] < points[None,:] - h).sum(0) 

return (nhi-nlo) / (2.*n*h)