1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

""" 

Given a list of integers, made up of (hopefully) a small number of long runs 

of consecutive integers, compute a representation of the form 

((start1, end1), (start2, end2) ...). Then answer the question "was x present 

in the original list?" in time O(log(# runs)). 

""" 

 

import bisect 

 

def intranges_from_list(list_): 

"""Represent a list of integers as a sequence of ranges: 

((start_0, end_0), (start_1, end_1), ...), such that the original 

integers are exactly those x such that start_i <= x < end_i for some i. 

 

Ranges are encoded as single integers (start << 32 | end), not as tuples. 

""" 

 

sorted_list = sorted(list_) 

ranges = [] 

last_write = -1 

for i in range(len(sorted_list)): 

if i+1 < len(sorted_list): 

if sorted_list[i] == sorted_list[i+1]-1: 

continue 

current_range = sorted_list[last_write+1:i+1] 

ranges.append(_encode_range(current_range[0], current_range[-1] + 1)) 

last_write = i 

 

return tuple(ranges) 

 

def _encode_range(start, end): 

return (start << 32) | end 

 

def _decode_range(r): 

return (r >> 32), (r & ((1 << 32) - 1)) 

 

 

def intranges_contain(int_, ranges): 

"""Determine if `int_` falls into one of the ranges in `ranges`.""" 

tuple_ = _encode_range(int_, 0) 

pos = bisect.bisect_left(ranges, tuple_) 

# we could be immediately ahead of a tuple (start, end) 

# with start < int_ <= end 

if pos > 0: 

left, right = _decode_range(ranges[pos-1]) 

if left <= int_ < right: 

return True 

# or we could be immediately behind a tuple (int_, end) 

if pos < len(ranges): 

left, _ = _decode_range(ranges[pos]) 

if left == int_: 

return True 

return False