1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

import numpy as num 

from pyrocko import orthodrome as od 

from pyrocko.guts import List, Bool, Float 

 

from kite.sources import disloc_ext 

from .base import SandboxSourceRectangular, SandboxSource, SourceProcessor 

 

d2r = num.pi / 180. 

r2d = 180. / num.pi 

km = 1e3 

 

 

__all__ = ['OkadaSource', 'OkadaPath', 'DislocProcessor'] 

 

 

class OkadaSource(SandboxSourceRectangular): 

'''Rectangular Okada source modell. 

''' 

 

__implements__ = 'disloc' 

 

opening = Float.T( 

help='Opening of the plane in [m]', 

optional=True, 

default=0.) 

nu = Float.T( 

default=0.25, 

help='Poisson\'s ratio, typically 0.25') 

 

@property 

def seismic_moment(self): 

''' Scalar Seismic moment 

 

Disregarding the opening (as for now) 

We assume a shear modulus of :math:`\mu = 36 \mathrm{GPa}` 

and :math:`M_0 = \mu A D` 

 

.. important :: 

 

We assume a perfect elastic solid with :math:`K=\\frac{5}{3}\\mu` 

 

Through :math:`\\mu = \\frac{3K(1-2\\nu)}{2(1+\\nu)}` this leads to 

:math:`\\mu = \\frac{8(1+\\nu)}{1-2\\nu}` 

 

:returns: Seismic moment release 

:rtype: float 

''' 

mu = (8. * (1+self.nu))/(1 - 2.*self.nu) 

mu = 32e9 # GPa 

A = self.length * self.width 

return mu * A * self.slip 

 

@property 

def moment_magnitude(self): 

'''Moment magnitude from Seismic moment 

 

We assume :math:`M_\\mathrm{w} = {\\frac{2}{3}}\\log_{10}(M_0) - 10.7` 

 

:returns: Moment magnitude 

:rtype: float 

''' 

return 2./3 * num.log10(self.seismic_moment*1e7) - 10.7 

 

def dislocSource(self, dsrc=None): 

if dsrc is None: 

dsrc = num.empty(10) 

 

dip = self.dip 

if self.dip == 90.: 

dip -= 1e-2 

 

dsrc[0] = self.length 

dsrc[1] = self.width 

dsrc[2] = self.depth 

dsrc[3] = -dip 

dsrc[4] = self.strike - 180. 

dsrc[5] = self.easting 

dsrc[6] = self.northing 

 

ss_slip = num.cos(self.rake * d2r) * self.slip 

ds_slip = num.sin(self.rake * d2r) * self.slip 

# print '{:<13}{}\n{:<13}{}'.format( 

# 'strike_slip', ss_slip, 'dip_slip', ds_slip) 

dsrc[7] = -ss_slip # SS Strike-Slip 

dsrc[8] = -ds_slip # DS Dip-Slip 

dsrc[9] = self.opening # TS Tensional-Slip 

 

return dsrc 

 

# @property 

# def parameters(self): 

# return self.T.propnames 

 

def getParametersArray(self): 

return num.array([self.__getattribute__(p) for p in self.parameters]) 

 

def setParametersArray(self, parameter_arr): 

if parameter_arr.size != len(self.parameters): 

raise AttributeError('Invalid number of parameters, %s has %d' 

' parameters' 

% self.__name__, len(self.parameters)) 

for ip, param in enumerate(self.parameters): 

self.__setattr__(param, parameter_arr[ip]) 

self.parametersUpdated() 

 

 

class OkadaSegment(OkadaSource): 

enabled = Bool.T( 

default=True, 

optional=True) 

 

 

class OkadaPath(SandboxSource): 

 

__implements__ = 'disloc' 

 

depth = None 

nu = Float.T( 

default=0.25, 

help='Poisson\'s ratio, typically 0.25') 

nodes = List.T( 

default=[], 

optional=True, 

help='Nodes of the segments as (easting, northing) tuple of [m]') 

segments__ = List.T( 

default=[], 

optional=True, 

help='List of all segments.') 

 

def __init__(self, *args, **kwargs): 

SandboxSource.__init__(self, *args, **kwargs) 

 

self._segments = [] 

 

if not self.nodes: 

self.nodes.append( 

[self.easting, self.northing]) 

 

@property 

def segments(self): 

return self._segments 

 

@segments.setter 

def segments(self, segments): 

self._segments = segments 

 

@staticmethod 

def _newSegment(e1, n1, e2, n2, **kwargs): 

dE = e2 - e1 

dN = n2 - n1 

length = (dN**2 + dE**2)**.5 

'''Width Scaling relation after 

 

Leonard, M. (2010). Earthquake fault scaling: Relating rupture length, 

width, average displacement, and moment release, Bull. Seismol. 

Soc. Am. 100, no. 5, 1971-1988. 

''' 

segment = { 

'northing': n1 + dN/2, 

'easting': e1 + dE/2, 

'depth': 0., 

'length': length, 

'width': 15. * length**.66, 

'strike': num.arccos(dN/length) * r2d, 

'slip': 45., 

'rake': 90., 

} 

segment.update(kwargs) 

return OkadaSegment(**segment) 

 

def _moveSegment(self, pos, e1, n1, e2, n2): 

dE = e2 - e1 

dN = n2 - n1 

length = (dN**2 + dE**2)**.5 

 

segment_update = { 

'northing': n1 + dN/2, 

'easting': e1 + dE/2, 

'length': length, 

'width': 15. * length**.66, 

'strike': num.arccos(dN/length) * r2d, 

} 

 

segment = self.segments[pos] 

for attr, val in segment_update.items(): 

segment.__setattr__(attr, val) 

 

def addNode(self, easting, northing): 

self.nodes.append([easting, northing]) 

self.segments.append( 

self._newSegment( 

e1=self.nodes[-2][0], 

n1=self.nodes[-2][1], 

e2=self.nodes[-1][0], 

n2=self.nodes[-1][1])) 

 

def insertNode(self, pos, easting, northing): 

self.nodes.insert(pos, [easting, northing]) 

self.segments.append( 

self._newSegment( 

e1=self.nodes[pos][0], 

n1=self.nodes[pos][1], 

e2=self.nodes[pos+1][0], 

n2=self.nodes[pos+1][1])) 

self._moveSegment( 

pos-1, 

e1=self.nodes[pos-1][0], 

n1=self.nodes[pos-1][1], 

e2=self.nodes[pos][0], 

n2=self.nodes[pos][1], 

) 

 

def moveNode(self, pos, easting, northing): 

self.nodes[pos] = [easting, northing] 

if pos < len(self): 

self._moveSegment( 

pos, 

e1=self.nodes[pos][0], 

n1=self.nodes[pos][1], 

e2=self.nodes[pos+1][0], 

n2=self.nodes[pos+1][1]) 

if pos != 0: 

self._moveSegment( 

pos, 

e1=self.nodes[pos-1][0], 

n1=self.nodes[pos-1][1], 

e2=self.nodes[pos][0], 

n2=self.nodes[pos][1]) 

 

def __len__(self): 

return len(self.segments) 

 

def dislocSource(self): 

return num.array([seg.dislocSource() for seg in self.segments 

if seg.enabled]) 

 

 

class DislocProcessor(SourceProcessor): 

__implements__ = 'disloc' 

 

@staticmethod 

def process(sources, sandbox, nthreads=0): 

result = { 

'processor_profile': dict(), 

'displacement.n': num.zeros(sandbox.frame.npixel), 

'displacement.e': num.zeros(sandbox.frame.npixel), 

'displacement.d': num.zeros(sandbox.frame.npixel), 

} 

 

src_nu = set(src.nu for src in sources) 

 

for nu in src_nu: 

nu_sources = [src for src in sources if src.nu == nu] 

nsources = len(nu_sources) 

src_arr = num.vstack([src.dislocSource() for src in nu_sources]) 

 

north_shifts, east_shifts = od.latlon_to_ne_numpy( 

num.repeat(sandbox.frame.llLat, nsources), 

num.repeat(sandbox.frame.llLon, nsources), 

num.array([src.lat for src in nu_sources]), 

num.array([src.lon for src in nu_sources])) 

 

src_arr[:, 5] += east_shifts 

src_arr[:, 6] += north_shifts 

 

res = disloc_ext.disloc( 

src_arr, sandbox.frame.coordinatesMeter, 

nu, nthreads) 

 

result['displacement.e'] += res[:, 0] 

result['displacement.n'] += res[:, 1] 

result['displacement.d'] += -res[:, 2] 

 

return result