1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

#!/bin/python 

import numpy as num 

import scipy as sp 

 

C = 299792458 # m/s 

 

 

def squareMatrix(mat): 

if mat.shape[0] == mat.shape[1]: 

return mat 

min_a = num.argmin(mat.shape) 

max_a = num.argmax(mat.shape) 

 

width = mat.shape[max_a] - mat.shape[min_a] 

 

if min_a == 0: 

padding = ((width, 0), (0, 0)) 

elif min_a == 1: 

padding = ((0, 0), (0, width)) 

return num.pad(mat, 

pad_width=padding, 

mode='constant', 

constant_values=0.) 

 

 

def derampMatrix(displ): 

""" Deramp through fitting a bilinear plane 

Data is also de-meaned 

""" 

if displ.ndim != 2: 

raise TypeError('Displacement has to be 2-dim array') 

mx = num.nanmedian(displ, axis=0) 

my = num.nanmedian(displ, axis=1) 

 

ix = num.arange(mx.size) 

iy = num.arange(my.size) 

dx, cx, _, _, _ = sp.stats.linregress(ix[~num.isnan(mx)], 

mx[~num.isnan(mx)]) 

dy, cy, _, _, _ = sp.stats.linregress(iy[~num.isnan(my)], 

my[~num.isnan(my)]) 

 

rx = (ix * dx) 

ry = (iy * dy) 

data = displ - (rx[num.newaxis, :] + ry[:, num.newaxis]) 

data -= num.nanmean(data) 

return data 

 

 

def derampGMatrix(displ): 

""" Deramp through lsq a bilinear plane 

Data is also de-meaned 

""" 

if displ.ndim != 2: 

raise TypeError('Displacement has to be 2-dim array') 

 

# form a relative coordinate grid 

c_grid = num.mgrid[0:displ.shape[0], 0:displ.shape[1]] 

 

# separate and flatten coordinate grid into x and y vectors for each !point 

ix = c_grid[0].flat 

iy = c_grid[1].flat 

displ_f = displ.flat 

 

# reduce vectors taking out all NaN's 

displ_nonan = displ_f[num.isfinite(displ_f)] 

ix = ix[num.isfinite(displ_f)] 

iy = iy[num.isfinite(displ_f)] 

 

# form kernel/design derampMatrix (c, x, y) 

GT = num.matrix([num.ones(len(ix)), ix, iy]) 

G = GT.T 

 

# generalized kernel matrix (quadtratic) 

GTG = GT * G 

# generalized inverse 

GTGinv = GTG.I 

 

# lsq estimates of ramp parameter 

ramp_paras = displ_nonan * (GTGinv * GT).T 

 

# ramp values 

ramp_nonan = ramp_paras * GT 

ramp_f = num.multiply(displ_f, 0.) 

 

# insert ramp values in full vectors 

num.place(ramp_f, num.isfinite(displ_f), num.array(ramp_nonan).flatten()) 

ramp_f = ramp_f.reshape(displ.shape[0], displ.shape[1]) 

 

return displ - ramp_f 

 

 

def trimMatrix(displ, data=None): 

"""Trim displacement matrix from all NaN rows and columns 

""" 

if displ.ndim != 2: 

raise ValueError('Displacement has to be 2-dim array') 

 

if num.all(num.isnan(displ)): 

raise ValueError('Displacement is all NaN.') 

 

r1 = r2 = False 

c1 = c2 = False 

for r in range(displ.shape[0]): 

if not num.all(num.isnan(displ[r, :])): 

if r1 is False: 

r1 = r 

r2 = r 

for c in range(displ.shape[1]): 

if not num.all(num.isnan(displ[:, c])): 

if c1 is False: 

c1 = c 

c2 = c 

 

if data is not None: 

return data[r1:(r2+1), c1:(c2+1)] 

 

return displ[r1:(r2+1), c1:(c2+1)] 

 

 

def greatCircleDistance(alat, alon, blat, blon): 

R1 = 6371009. 

d2r = num.deg2rad 

sin = num.sin 

cos = num.cos 

a = sin(d2r(alat-blat)/2)**2 + cos(d2r(alat)) * cos(d2r(blat))\ 

* sin(d2r(alon-blon)/2)**2 

c = 2. * num.arctan2(num.sqrt(a), num.sqrt(1.-a)) 

return R1 * c 

 

 

def property_cached(func): 

var_name = '_cached_' + func.__name__ 

func_doc = ':getter: *(Cached)*' 

if func.__doc__ is not None: 

func_doc += func.__doc__ 

else: 

func_doc += ' Undocumented' 

 

def cache_return(instance, *args, **kwargs): 

cache_return.__doc__ = func.__doc__ 

if instance.__dict__.get(var_name, None) is None: 

instance.__dict__[var_name] = func(instance) 

return instance.__dict__[var_name] 

 

def cache_return_setter(instance, value): 

instance.__dict__[var_name] = value 

 

return property(fget=cache_return, 

fset=cache_return_setter, 

doc=func_doc) 

 

 

def calcPrecission(data): 

# number of floating points: 

mn = num.nanmin(data) 

mx = num.nanmax(data) 

if not num.isfinite(mx) or num.isfinite(mn): 

return 3, 6 

precission = int(round(num.log10((100. / (mx-mn))))) 

if precission < 0: 

precission = 0 

# length of the number in the label: 

length = max(len(str(int(mn))), len(str(int(mx)))) + precission 

return precission, length 

 

 

def formatScalar(v, ndigits=7): 

if num.isinf(v): 

return 'inf' 

elif num.isnan(v): 

return 'nan' 

 

if v % 1 == 0.: 

return '{value:d}'.format(value=v) 

 

if abs(v) < (10.**-(ndigits-2)): 

return '{value:e}'.format(value=v) 

 

p = num.ceil(num.log10(num.abs(v))) 

if p <= 0.: 

f = {'d': 1, 'f': ndigits - 1} 

else: 

p = int(p) 

f = {'d': p, 'f': ndigits - p} 

 

return '{value:{d}.{f}f}'.format(value=v, **f) 

 

 

class Subject(object): 

""" 

Subject - Obsever model realization 

""" 

def __init__(self): 

self._listeners = list() 

self._mute = False 

 

def __call__(self, *args, **kwargs): 

return self.notify(*args, **kwargs) 

 

def mute(self): 

self._mute = True 

 

def unmute(self): 

self._mute = False 

 

def subscribe(self, listener): 

""" 

Subscribe a listening callback to this subject 

""" 

if len(self._listeners) > 0: 

self._listeners.insert(0, listener) 

else: 

self._listeners.append(listener) 

 

def unsubscribe(self, listener): 

""" 

Unsubscribe a listening callback from this subject 

""" 

try: 

self._listeners.remove(listener) 

except Exception: 

raise AttributeError('%s was not subscribed!', listener.__name__) 

 

def unsubscribeAll(self): 

for l in self._listeners: 

self.unsubscribe(l) 

 

def notify(self, *args, **kwargs): 

if self._mute: 

return 

for l in self._listeners: 

if callable(l): 

self._call(l, *args, **kwargs) 

 

@staticmethod 

def _call(func, *args, **kwargs): 

try: 

for k in kwargs.keys(): 

if k not in func.__code__.co_varnames: 

k.pop(k) 

except AttributeError: 

kwargs = {} 

func(*args, **kwargs) 

 

 

class ADict(dict): 

def __getattribute__(self, attr): 

return self[attr] 

 

def __setattr__(self, attr, value): 

self[attr] = value 

 

 

__all__ = ''' 

Subject 

'''.split()