1# http://pyrocko.org - GPLv3 

2# 

3# The Pyrocko Developers, 21st Century 

4# ---|P------/S----------~Lg---------- 

5from __future__ import absolute_import, division 

6 

7import math 

8import logging 

9import numpy as num 

10from . import trace 

11from .guts import Float, Object 

12from . import ahfullgreen_ext as ext 

13 

14logger = logging.getLogger('pyrocko.fomosto.ahfullgreen') 

15 

16 

17guts_prefix = 'pf' 

18 

19 

20class AhfullgreenError(Exception): 

21 pass 

22 

23 

24def make_seismogram( 

25 vp, vs, density, qp, qs, x, f, m6, 

26 quantity, deltat, stf=None, wanted_components='ned', 

27 want_far=True, want_intermediate=True, want_near=True, 

28 npad_levelling=40, out_alignment=0.): 

29 

30 if stf is None: 

31 stf = AhfullgreenSTFImpulse() 

32 

33 x = num.asarray(x, float) 

34 f = num.asarray(f, float) 

35 m6 = num.asarray(m6, float) 

36 

37 r = math.sqrt(num.sum(x**2)) 

38 

39 tp = r / vp 

40 ts = r / vs 

41 

42 if ts < tp: 

43 raise AhfullgreenError('unsupported material properties: ts < tp') 

44 

45 tpad = stf.t_cutoff() or deltat * 10. 

46 

47 tstart = tp - tpad - npad_levelling * deltat 

48 tstart = out_alignment + round((tstart - out_alignment) / deltat) * deltat 

49 

50 nt = trace.nextpow2(int(math.ceil( 

51 (ts - tp + 2 * tpad + 2*npad_levelling * deltat) / deltat))) 

52 

53 nspec = nt // 2 + 1 

54 

55 specs = [] 

56 for component in 'ned': 

57 if component in wanted_components: 

58 specs.append(num.zeros(nspec, dtype=complex)) 

59 else: 

60 specs.append(None) 

61 

62 oc_c = { 

63 'displacement': 1, # treated in post processing 

64 'velocity': 1, 

65 'acceleration': 2}[quantity] 

66 

67 out_spec_delta = float(2.0 * math.pi / (nt*deltat)) 

68 out_spec_offset = 0.0 

69 

70 omega = out_spec_offset + out_spec_delta * num.arange(nspec) 

71 coeffs_stf = stf(omega/(2.*math.pi)).astype(complex) 

72 coeffs_stf *= num.exp(1.0j * omega * tstart) 

73 

74 omega_max = 2.0 * math.pi * 0.5 / deltat 

75 omega_cut = omega_max * 0.75 

76 icut = int(num.ceil((omega_cut - out_spec_offset) / out_spec_delta)) 

77 

78 coeffs_stf[icut:] *= 0.5 + 0.5 * num.cos( 

79 math.pi * num.minimum( 

80 1.0, (omega[icut:] - omega_cut) / (omega_max - omega_cut))) 

81 

82 if num.all(x == 0.0): 

83 logger.warn( 

84 'Source and receiver are at the same position -> setting GF for ' 

85 'this combination to zero.') 

86 else: 

87 ext.add_seismogram( 

88 float(vp), float(vs), float(density), float(qp), float(qs), 

89 x, f, m6, oc_c, out_spec_delta, out_spec_offset, 

90 specs[0], specs[1], specs[2], 

91 want_far, want_intermediate, want_near) 

92 

93 outs = [] 

94 for i, component in enumerate('ned'): 

95 if component not in wanted_components: 

96 outs.append(None) 

97 

98 out = num.fft.irfft(coeffs_stf * specs[i], nt) 

99 out /= deltat 

100 assert out.size // 2 + 1 == specs[i].size 

101 

102 m1 = num.mean( 

103 out[:npad_levelling] * num.linspace(1., 0., npad_levelling)) 

104 

105 out -= m1 * 2. 

106 

107 if quantity == 'displacement': 

108 out = num.cumsum(out) * deltat 

109 

110 outs.append(out) 

111 

112 outs_wanted = [] 

113 for component in wanted_components: 

114 i = 'ned'.find(component) 

115 if i != -1: 

116 outs_wanted.append(outs[i]) 

117 else: 

118 outs_wanted.append(None) 

119 

120 return tstart, outs_wanted 

121 

122 

123def add_seismogram( 

124 vp, vs, density, qp, qs, x, f, m6, 

125 quantity, deltat, out_offset, 

126 out_n, out_e, out_d, stf=None, 

127 want_far=True, want_intermediate=True, want_near=True, 

128 npad_levelling=40): 

129 

130 ns = [out.size for out in (out_n, out_e, out_d) if out is not None] 

131 

132 if not all(n == ns[0] for n in ns): 

133 raise AhfullgreenError('Length of component arrays are not identical.') 

134 

135 n = ns[0] 

136 

137 wanted_components = ''.join( 

138 (c if out is not None else '-') 

139 for (out, c) in zip((out_n, out_e, out_d), 'ned')) 

140 

141 tstart, temps = make_seismogram( 

142 vp, vs, density, qp, qs, x, f, m6, 

143 quantity, deltat, stf=stf, 

144 wanted_components=wanted_components, 

145 want_far=want_far, 

146 want_intermediate=want_intermediate, 

147 want_near=want_near, 

148 npad_levelling=npad_levelling, out_alignment=out_offset) 

149 

150 for i, out in enumerate((out_n, out_e, out_d)): 

151 if out is None: 

152 continue 

153 

154 temp = temps[i] 

155 

156 ntemp = temp.size 

157 

158 tmin = max(out_offset, tstart) 

159 tmax = min( 

160 out_offset + (n-1) * deltat, 

161 tstart + (ntemp-1) * deltat) 

162 

163 def ind(t, t0): 

164 return int(round((t-t0)/deltat)) 

165 

166 out[ind(tmin, out_offset):ind(tmax, out_offset)+1] \ 

167 += temp[ind(tmin, tstart):ind(tmax, tstart)+1] 

168 

169 out[:ind(tmin, out_offset)] += 0. 

170 out[ind(tmax, out_offset)+1:] += temp[ind(tmax, tstart)] 

171 

172 

173class AhfullgreenSTF(Object): 

174 pass 

175 

176 

177class AhfullgreenSTFImpulse(AhfullgreenSTF): 

178 

179 def t_cutoff(self): 

180 return None 

181 

182 def __call__(self, f): 

183 return num.ones(f.size, dtype=complex) 

184 

185 

186class AhfullgreenSTFGauss(AhfullgreenSTF): 

187 

188 tau = Float.T(default=1.0) 

189 

190 def t_cutoff(self): 

191 return self.tau * 2. 

192 

193 def __call__(self, f): 

194 omega = f * 2. * math.pi 

195 

196 return num.exp(-(omega**2 * self.tau**2 / 8.))