1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

import logging 

import numpy as num 

from matplotlib import cm, gridspec 

 

from grond.plot.config import PlotConfig 

from grond.plot.collection import PlotItem 

 

from matplotlib import pyplot as plt 

from matplotlib.ticker import MaxNLocator, FuncFormatter 

from matplotlib import patches 

from pyrocko.guts import Tuple, Float, String, Int, Bool, StringChoice 

 

logger = logging.getLogger('grond.targets.satellite.plot') 

 

km = 1e3 

d2r = num.pi/180. 

guts_prefix = 'grond' 

 

 

def drape_displacements( 

displacement, shad_data, mappable, 

shad_lim=(.4, .98), contrast=1., mask=None): 

'''Map color data (displacement) on shaded relief.''' 

 

from scipy.ndimage import convolve as im_conv 

# Light source from somewhere above - psychologically the best choice 

# from upper left 

ramp = num.array([[1, 0], [0, -1.]]) * contrast 

 

# convolution of two 2D arrays 

shad = im_conv(shad_data*km, ramp.T) 

shad *= -1. 

 

# if there are strong artifical edges in the data, shades get 

# dominated by them. Cutting off the largest and smallest 2% of 

# shades helps 

percentile2 = num.quantile(shad, 0.02) 

percentile98 = num.quantile(shad, 0.98) 

shad[shad > percentile98] = percentile98 

shad[shad < percentile2] = percentile2 

 

# normalize shading 

shad -= num.nanmin(shad) 

shad /= num.nanmax(shad) 

 

if mask is not None: 

shad[mask] = num.nan 

 

# reduce range to balance gray color 

shad *= shad_lim[1] - shad_lim[0] 

shad += shad_lim[0] 

 

rgb_map = mappable.to_rgba(displacement) 

rgb_map[num.isnan(displacement)] = 1. 

rgb_map[:, :, :3] *= shad[:, :, num.newaxis] 

 

return rgb_map 

 

 

def displ2rad(displ, wavelength): 

return (displ % wavelength) / wavelength * num.pi 

 

 

def scale_axes(axis, scale, offset=0., suffix=''): 

from matplotlib.ticker import ScalarFormatter 

 

class FormatScaled(ScalarFormatter): 

 

@staticmethod 

def __call__(value, pos): 

return '{:,.1f}{:}'.format((offset + value) * scale, suffix)\ 

.replace(',', ' ') 

 

axis.set_major_formatter(FormatScaled()) 

 

 

class SatelliteTargetDisplacement(PlotConfig): 

''' Maps showing surface displacements from satellite and modelled data ''' 

 

name = 'satellite' 

dpi = Int.T( 

default=250) 

size_cm = Tuple.T( 

2, Float.T(), 

default=(22., 12.)) 

colormap = String.T( 

default='RdBu', 

help='Colormap for the surface displacements') 

relative_coordinates = Bool.T( 

default=False, 

help='Show relative coordinates, initial location centered at 0N, 0E') 

fit = StringChoice.T( 

default='best', choices=['best', 'mean'], 

help='Show the \'best\' or \'mean\' fits and source model from the' 

' ensamble.') 

 

show_topo = Bool.T( 

default=True, 

help='Drape displacements over the topography.') 

displacement_unit = StringChoice.T( 

default='m', 

choices=['m', 'mm', 'cm', 'rad'], 

help="Show results in 'm', 'cm', 'mm' or 'rad' for radians.") 

show_leaf_centres = Bool.T( 

default=True, 

help='show the center points of Quadtree leaves') 

source_outline_color = String.T( 

default='grey', 

help='Choose color of source outline from named matplotlib Colors') 

common_color_scale = Bool.T( 

default=True, 

help='Results shown with common color scale for all satellite ' 

'data sets (based on the data)') 

map_limits = Tuple.T( 

4, Float.T(), 

optional=True, 

help='Overwrite map limits in native coordinates. ' 

'Use (xmin, xmax, ymin, ymax)') 

nticks_x = Int.T( 

optional=True, 

help='Number of ticks on the x-axis.') 

 

def make(self, environ): 

cm = environ.get_plot_collection_manager() 

history = environ.get_history(subset='harvest') 

optimiser = environ.get_optimiser() 

ds = environ.get_dataset() 

 

environ.setup_modelling() 

 

cm.create_group_mpl( 

self, 

self.draw_static_fits(ds, history, optimiser), 

title=u'InSAR Displacements', 

section='fits', 

feather_icon='navigation', 

description=u''' 

Maps showing subsampled surface displacements as observed, modelled and the 

residual (observed minus modelled). 

 

The displacement values predicted by the orbit-ambiguity ramps are added to the 

modelled displacements (middle panels). The color shows the LOS displacement 

values associated with, and the extent of, every quadtree box. The light grey 

dots show the focal point of pixels combined in the quadtree box. This point 

corresponds to the position of the modelled data point. 

 

The large dark grey dot shows the reference source position. The grey filled 

box shows the surface projection of the modelled source, with the thick-lined 

edge marking the upper fault edge. Complete data extent is shown. 

''') 

 

def draw_static_fits(self, ds, history, optimiser, closeup=False): 

from pyrocko.orthodrome import latlon_to_ne_numpy 

problem = history.problem 

 

sat_targets = problem.satellite_targets 

for target in sat_targets: 

target.set_dataset(ds) 

 

if self.fit == 'best': 

source = history.get_best_source() 

model = history.get_best_model() 

elif self.fit == 'mean': 

source = history.get_mean_source() 

model = history.get_mean_model() 

 

results = problem.evaluate(model, targets=sat_targets) 

 

def init_axes(ax, scene, title, last_axes=False): 

ax.set_title(title, fontsize=self.font_size) 

ax.tick_params(length=2) 

 

if scene.frame.isMeter(): 

import utm 

ax.set_xlabel('Easting [km]', fontsize=self.font_size) 

scale_x = dict(scale=1./km) 

scale_y = dict(scale=1./km) 

utm_E, utm_N, utm_zone, utm_zone_letter =\ 

utm.from_latlon(source.effective_lat, 

source.effective_lon) 

scale_x['offset'] = utm_E 

scale_y['offset'] = utm_N 

 

if last_axes: 

ax.text(0.975, 0.025, 

'UTM Zone %d%s' % (utm_zone, utm_zone_letter), 

va='bottom', ha='right', 

fontsize=8, alpha=.7, 

transform=ax.transAxes) 

ax.set_aspect('equal') 

 

elif scene.frame.isDegree(): 

scale_x = dict(scale=1., suffix='°') 

scale_y = dict(scale=1., suffix='°') 

scale_x['offset'] = source.effective_lon 

scale_y['offset'] = source.effective_lat 

 

ax.set_aspect(1./num.cos(source.effective_lat*d2r)) 

 

if self.relative_coordinates: 

scale_x['offset'] = 0. 

scale_y['offset'] = 0. 

 

nticks_x = 4 if abs(scene.frame.llLon) >= 100 else 5 

 

ax.xaxis.set_major_locator(MaxNLocator(self.nticks_x or nticks_x)) 

ax.yaxis.set_major_locator(MaxNLocator(5)) 

 

ax.scale_x = scale_x 

ax.scale_y = scale_y 

 

scale_axes(ax.get_xaxis(), **scale_x) 

scale_axes(ax.get_yaxis(), **scale_y) 

 

def draw_source(ax, scene): 

if scene.frame.isMeter(): 

fn, fe = source.outline(cs='xy').T 

fn -= fn.mean() 

fe -= fe.mean() 

elif scene.frame.isDegree(): 

fn, fe = source.outline(cs='latlon').T 

fn -= source.effective_lat 

fe -= source.effective_lon 

 

# source is centered 

ax.scatter(0., 0., color='black', s=3, alpha=.5, marker='o') 

ax.fill(fe, fn, 

edgecolor=(0., 0., 0.), 

facecolor=self.source_outline_color, 

alpha=0.7) 

ax.plot(fe[0:2], fn[0:2], 'k', linewidth=1.3) 

 

def get_displacement_rgba(displacements, scene, mappable): 

arr = num.full_like(scene.displacement, fill_value=num.nan) 

qt = scene.quadtree 

 

for syn_v, leaf in zip(displacements, qt.leaves): 

arr[leaf._slice_rows, leaf._slice_cols] = syn_v 

 

arr[scene.displacement_mask] = num.nan 

 

if not self.common_color_scale \ 

and not self.displacement_unit == 'rad': 

abs_displ = num.abs(displacements).max() 

mappable.set_clim(-abs_displ, abs_displ) 

 

if self.show_topo: 

try: 

elevation = scene.get_elevation() 

return drape_displacements(arr, elevation, mappable) 

except Exception as e: 

logger.warning('could not plot hillshaded topo') 

logger.exception(e) 

 

return mappable.to_rgba(arr) 

 

def draw_leaves(ax, scene, offset_e=0., offset_n=0.): 

rects = scene.quadtree.getMPLRectangles() 

for r in rects: 

r.set_edgecolor((.4, .4, .4)) 

r.set_linewidth(.5) 

r.set_facecolor('none') 

r.set_x(r.get_x() - offset_e) 

r.set_y(r.get_y() - offset_n) 

map(ax.add_artist, rects) 

 

if self.show_leaf_centres: 

ax.scatter(scene.quadtree.leaf_coordinates[:, 0] - offset_e, 

scene.quadtree.leaf_coordinates[:, 1] - offset_n, 

s=.25, c='black', alpha=.1) 

 

def add_arrow(ax, scene): 

phi = num.nanmean(scene.phi) 

los_dx = num.cos(phi + num.pi) * .0625 

los_dy = num.sin(phi + num.pi) * .0625 

 

az_dx = num.cos(phi - num.pi/2) * .125 

az_dy = num.sin(phi - num.pi/2) * .125 

 

anchor_x = .9 if los_dx < 0 else .1 

anchor_y = .85 if los_dx < 0 else .975 

 

az_arrow = patches.FancyArrow( 

x=anchor_x-az_dx, y=anchor_y-az_dy, 

dx=az_dx, dy=az_dy, 

head_width=.025, 

alpha=.5, fc='k', 

head_starts_at_zero=False, 

length_includes_head=True, 

transform=ax.transAxes) 

 

los_arrow = patches.FancyArrow( 

x=anchor_x-az_dx/2, y=anchor_y-az_dy/2, 

dx=los_dx, dy=los_dy, 

head_width=.02, 

alpha=.5, fc='k', 

head_starts_at_zero=False, 

length_includes_head=True, 

transform=ax.transAxes) 

 

ax.add_artist(az_arrow) 

ax.add_artist(los_arrow) 

 

urE, urN, llE, llN = (0., 0., 0., 0.) 

for target in sat_targets: 

 

if target.scene.frame.isMeter(): 

off_n, off_e = map(float, latlon_to_ne_numpy( 

target.scene.frame.llLat, target.scene.frame.llLon, 

source.effective_lat, source.effective_lon)) 

if target.scene.frame.isDegree(): 

off_n = source.effective_lat - target.scene.frame.llLat 

off_e = source.effective_lon - target.scene.frame.llLon 

 

turE, turN, tllE, tllN = zip( 

*[(leaf.gridE.max()-off_e, 

leaf.gridN.max()-off_n, 

leaf.gridE.min()-off_e, 

leaf.gridN.min()-off_n) 

for leaf in target.scene.quadtree.leaves]) 

 

turE, turN = map(max, (turE, turN)) 

tllE, tllN = map(min, (tllE, tllN)) 

urE, urN = map(max, ((turE, urE), (urN, turN))) 

llE, llN = map(min, ((tllE, llE), (llN, tllN))) 

 

def generate_plot(sat_target, result, ifig): 

 

scene = sat_target.scene 

 

fig = plt.figure() 

fig.set_size_inches(*self.size_inch) 

gs = gridspec.GridSpec( 

2, 3, 

wspace=.15, hspace=.2, 

left=.1, right=.975, top=.95, 

height_ratios=[12, 1]) 

 

item = PlotItem( 

name='fig_%i' % ifig, 

attributes={'targets': [sat_target.path]}, 

title=u'Satellite Surface Displacements - %s' 

% scene.meta.scene_title, 

description=u''' 

Surface displacements derived from satellite data. 

(Left) the input data, (center) the modelled 

data and (right) the model residual. 

''') 

 

stat_obs = result.statics_obs 

stat_syn = result.statics_syn['displacement.los'] 

res = stat_obs - stat_syn 

 

if scene.frame.isMeter(): 

offset_n, offset_e = map(float, latlon_to_ne_numpy( 

scene.frame.llLat, scene.frame.llLon, 

source.effective_lat, source.effective_lon)) 

elif scene.frame.isDegree(): 

offset_n = source.effective_lat - scene.frame.llLat 

offset_e = source.effective_lon - scene.frame.llLon 

 

im_extent = ( 

scene.frame.E.min() - offset_e, 

scene.frame.E.max() - offset_e, 

scene.frame.N.min() - offset_n, 

scene.frame.N.max() - offset_n) 

 

if self.displacement_unit == 'rad': 

wavelength = scene.meta.wavelength 

if wavelength is None: 

raise AttributeError( 

'The satellite\'s wavelength is not set') 

 

stat_obs = displ2rad(stat_obs, wavelength) 

stat_syn = displ2rad(stat_syn, wavelength) 

res = displ2rad(res, wavelength) 

 

self.colormap = 'hsv' 

data_range = (0., num.pi) 

 

else: 

abs_displ = num.abs([stat_obs.min(), stat_obs.max(), 

stat_syn.min(), stat_syn.max(), 

res.min(), res.max()]).max() 

data_range = (-abs_displ, abs_displ) 

 

cmw = cm.ScalarMappable(cmap=self.colormap) 

cmw.set_clim(*data_range) 

cmw.set_array(stat_obs) 

 

axes = [fig.add_subplot(gs[0, 0]), 

fig.add_subplot(gs[0, 1]), 

fig.add_subplot(gs[0, 2])] 

 

ax = axes[0] 

ax.imshow( 

get_displacement_rgba(stat_obs, scene, cmw), 

extent=im_extent, origin='lower') 

draw_leaves(ax, scene, offset_e, offset_n) 

draw_source(ax, scene) 

add_arrow(ax, scene) 

init_axes(ax, scene, 'Observed') 

 

ax.text(.025, .025, 'Scene ID: %s' % scene.meta.scene_id, 

fontsize=8, alpha=.7, 

va='bottom', transform=ax.transAxes) 

if scene.frame.isMeter(): 

ax.set_ylabel('Northing [km]', fontsize=self.font_size) 

 

ax = axes[1] 

ax.imshow( 

get_displacement_rgba(stat_syn, scene, cmw), 

extent=im_extent, origin='lower') 

draw_leaves(ax, scene, offset_e, offset_n) 

draw_source(ax, scene) 

add_arrow(ax, scene) 

init_axes(ax, scene, 'Model') 

ax.get_yaxis().set_visible(False) 

 

ax = axes[2] 

ax.imshow( 

get_displacement_rgba(res, scene, cmw), 

extent=im_extent, origin='lower') 

 

draw_leaves(ax, scene, offset_e, offset_n) 

draw_source(ax, scene) 

add_arrow(ax, scene) 

init_axes(ax, scene, 'Residual', last_axes=True) 

ax.get_yaxis().set_visible(False) 

 

for ax in axes: 

ax.set_xlim(*im_extent[:2]) 

ax.set_ylim(*im_extent[2:]) 

 

if closeup: 

if scene.frame.isMeter(): 

fn, fe = source.outline(cs='xy').T 

elif scene.frame.isDegree(): 

fn, fe = source.outline(cs='latlon').T 

fn -= source.effective_lat 

fe -= source.effective_lon 

 

if fn.size > 1: 

off_n = (fn[0] + fn[1]) / 2 

off_e = (fe[0] + fe[1]) / 2 

else: 

off_n = fn[0] 

off_e = fe[0] 

 

fault_size = 2*num.sqrt(max(abs(fn-off_n))**2 

+ max(abs(fe-off_e))**2) 

fault_size *= self.map_scale 

if fault_size == 0.0: 

extent = (scene.frame.N[-1] + scene.frame.E[-1]) / 2 

fault_size = extent * .25 

 

for ax in axes: 

ax.set_xlim(-fault_size/2 + off_e, fault_size/2 + off_e) 

ax.set_ylim(-fault_size/2 + off_n, fault_size/2 + off_n) 

 

if self.map_limits is not None: 

xmin, xmax, ymin, ymax = self.map_limits 

assert xmin < xmax, 'bad map_limits xmin > xmax' 

assert ymin < ymax, 'bad map_limits ymin > ymax' 

 

for ax in axes: 

ax.set_xlim( 

xmin/ax.scale_x['scale'] - ax.scale_x['offset'], 

xmax/ax.scale_x['scale'] - ax.scale_x['offset'],) 

ax.set_ylim( 

ymin/ax.scale_y['scale'] - ax.scale_y['offset'], 

ymax/ax.scale_y['scale'] - ax.scale_y['offset']) 

 

if self.displacement_unit == 'm': 

def cfmt(x, p): 

return '%.2f' % x 

elif self.displacement_unit == 'cm': 

def cfmt(x, p): 

return '%.1f' % (x * 1e2) 

elif self.displacement_unit == 'mm': 

def cfmt(x, p): 

return '%.0f' % (x * 1e3) 

elif self.displacement_unit == 'rad': 

def cfmt(x, p): 

return '%.2f' % x 

else: 

raise AttributeError( 

'unknown displacement unit %s' % self.displacement_unit) 

 

cbar_args = dict( 

orientation='horizontal', 

format=FuncFormatter(cfmt), 

use_gridspec=True) 

cbar_label = 'LOS Displacement [%s]' % self.displacement_unit 

 

if self.common_color_scale: 

cax = fig.add_subplot(gs[1, 1]) 

cax.set_aspect(.05) 

cbar = fig.colorbar(cmw, cax=cax, **cbar_args) 

cbar.set_label(cbar_label) 

else: 

for idata, data in enumerate((stat_syn, stat_obs, res)): 

cax = fig.add_subplot(gs[1, idata]) 

cax.set_aspect(.05) 

 

if not self.displacement_unit == 'rad': 

abs_displ = num.abs(data).max() 

cmw.set_clim(-abs_displ, abs_displ) 

 

cbar = fig.colorbar(cmw, cax=cax, **cbar_args) 

cbar.set_label(cbar_label) 

 

return (item, fig) 

 

for ifig, (sat_target, result) in enumerate(zip(sat_targets, results)): 

yield generate_plot(sat_target, result, ifig) 

 

 

class SatelliteTargetDisplacementCloseup(SatelliteTargetDisplacement): 

''' Close-up of satellite surface displacements and modelled data. ''' 

name = 'satellite_closeup' 

 

map_scale = Float.T( 

default=2., 

help='Scale the map surroundings, larger value zooms out.') 

 

def make(self, environ): 

cm = environ.get_plot_collection_manager() 

history = environ.get_history(subset='harvest') 

optimiser = environ.get_optimiser() 

ds = environ.get_dataset() 

 

environ.setup_modelling() 

 

cm.create_group_mpl( 

self, 

self.draw_static_fits(ds, history, optimiser, closeup=True), 

title=u'InSAR Displacements (Closeup)', 

section='fits', 

feather_icon='zoom-in', 

description=u''' 

Maps showing subsampled surface displacements as observed, modelled and the 

residual (observed minus modelled). 

 

The displacement values predicted by the orbit-ambiguity ramps are added to the 

modelled displacements (middle panels). The color shows the LOS displacement 

values associated with, and the extent of, every quadtree box. The light grey 

dots show the focal point of pixels combined in the quadtree box. This point 

corresponds to the position of the modelled data point. 

 

The large dark grey dot shows the reference source position. The grey filled 

box shows the surface projection of the modelled source, with the thick-lined 

edge marking the upper fault edge. Map is focused around the fault's extent. 

''') 

 

 

def get_plot_classes(): 

return [SatelliteTargetDisplacement, SatelliteTargetDisplacementCloseup]