Coverage for /usr/local/lib/python3.11/dist-packages/pyrocko/spit.py: 88%
337 statements
« prev ^ index » next coverage.py v6.5.0, created at 2023-10-23 12:04 +0000
« prev ^ index » next coverage.py v6.5.0, created at 2023-10-23 12:04 +0000
1# http://pyrocko.org - GPLv3
2#
3# The Pyrocko Developers, 21st Century
4# ---|P------/S----------~Lg----------
6'''
7N-dimensional space partitioning multi-linear interpolator.
8'''
10import struct
11import logging
12import numpy as num
14try:
15 range = xrange
16except NameError:
17 pass
19logger = logging.getLogger('pyrocko.spit')
21or_ = num.logical_or
22and_ = num.logical_and
23not_ = num.logical_not
24all_ = num.all
25any_ = num.any
28class OutOfBounds(Exception):
29 pass
32class Cell(object):
33 __slots__ = (
34 "tree", "index", "depths", "bad", "children", "xbounds", "deepen",
35 "a", "b", "f")
37 def __init__(self, tree, index, f=None):
38 self.tree = tree
39 self.index = index
40 self.depths = num.log2(index).astype(int)
41 self.bad = False
42 self.children = []
43 n = 2**self.depths
44 i = self.index - n
45 delta = (self.tree.xbounds[:, 1] - self.tree.xbounds[:, 0])/n
46 xmin = self.tree.xbounds[:, 0]
47 self.xbounds = self.tree.xbounds.copy()
48 self.xbounds[:, 0] = xmin + i * delta
49 self.xbounds[:, 1] = xmin + (i+1) * delta
50 self.a = self.xbounds[:, ::-1].copy()
51 self.b = self.a.copy()
52 self.b[:, 1] = self.xbounds[:, 1] - self.xbounds[:, 0]
53 self.b[:, 0] = - self.b[:, 1]
55 self.a[:, 0] += (self.b[:, 0] == 0.0)*0.5
56 self.a[:, 1] -= (self.b[:, 1] == 0.0)*0.5
57 self.b[:, 0] -= (self.b[:, 0] == 0.0)
58 self.b[:, 1] += (self.b[:, 1] == 0.0)
60 if f is None:
61 it = nditer_outer(tuple(self.xbounds) + (None,))
62 for vvv in it:
63 vvv[-1][...] = self.tree._f_cached(vvv[:-1])
65 self.f = it.operands[-1]
66 else:
67 self.f = f
69 def interpolate(self, x):
70 if self.children:
71 for cell in self.children:
72 if all_(and_(cell.xbounds[:, 0] <= x,
73 x <= cell.xbounds[:, 1])):
74 return cell.interpolate(x)
76 if all_(num.isfinite(self.f)):
77 ws = (x[:, num.newaxis] - self.a)/self.b
78 wn = num.multiply.reduce(
79 num.array(num.ix_(*ws), dtype=object))
80 return num.sum(self.f * wn)
81 else:
82 return None
84 def interpolate_many(self, x):
85 ndim = self.tree.ndim
86 ndim_range = tuple(range(ndim))
87 if self.children:
88 result = num.full(x.shape[0], fill_value=num.nan)
89 for cell in self.children:
90 indices = num.where(
91 ndim == num.sum(and_(
92 cell.xbounds[:, 0] <= x,
93 x <= cell.xbounds[:, 1]), axis=-1))[0]
95 if indices.size != 0:
96 result[indices] = cell.interpolate_many(x[indices])
97 return result
99 if all_(num.isfinite(self.f)):
100 ws = (x[..., num.newaxis] - self.a)/self.b
101 npoints = ws.shape[0]
102 ws_pimped = [ws[:, i, :] for i in ndim_range]
103 for i in ndim_range:
104 s = [npoints] + [1] * ndim
105 s[1+i] = 2
106 ws_pimped[i].shape = tuple(s)
108 wn = ws_pimped[0]
109 for idim in ndim_range[1:]:
110 wn = wn * ws_pimped[idim]
112 result = wn * self.f
113 for i in ndim_range:
114 result = num.sum(result, axis=-1)
116 return result
117 else:
118 return num.full(x.shape[0], fill_value=num.nan)
120 def slice(self, x):
121 x = num.array(x, dtype=float)
122 x_mask = not_(num.isfinite(x))
123 x_ = x.copy()
124 x_[x_mask] = 0.0
125 return [
126 cell for cell in self.children if all_(or_(
127 x_mask,
128 and_(
129 cell.xbounds[:, 0] <= x_,
130 x_ <= cell.xbounds[:, 1])))]
132 def plot_rects(self, axes, x, dims):
133 if self.children:
134 for cell in self.slice(x):
135 cell.plot_rects(axes, x, dims)
137 else:
138 points = []
139 for iy, ix in ((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)):
140 points.append(
141 (self.xbounds[dims[0], iy], self.xbounds[dims[1], ix]))
143 points = num.transpose(points)
144 axes.plot(points[1], points[0], color=(0.1, 0.1, 0.0, 0.1))
146 def check_holes(self):
147 '''
148 Check if :py:class:`Cell` or its children contain NaNs.
149 '''
150 if self.children:
151 return any([child.check_holes() for child in self.children])
152 else:
153 return num.any(num.isnan(self.f))
155 def plot_2d(self, axes, x, dims):
156 idims = num.array(dims)
157 self.plot_rects(axes, x, dims)
158 coords = [
159 num.linspace(xb[0], xb[1], 1+int((xb[1]-xb[0])/d))
160 for (xb, d) in zip(self.xbounds[idims, :], self.tree.xtols[idims])]
162 npoints = coords[0].size * coords[1].size
163 g = num.meshgrid(*coords[::-1])[::-1]
164 points = num.empty((npoints, self.tree.ndim), dtype=float)
165 for idim in range(self.tree.ndim):
166 try:
167 idimout = dims.index(idim)
168 points[:, idim] = g[idimout].ravel()
169 except ValueError:
170 points[:, idim] = x[idim]
172 fi = num.empty((coords[0].size, coords[1].size), dtype=float)
173 fi_r = fi.ravel()
174 fi_r[...] = self.interpolate_many(points)
176 if num.any(num.isnan(fi)):
177 logger.warning('')
178 if any_(num.isfinite(fi)):
179 fi = num.ma.masked_invalid(fi)
180 axes.imshow(
181 fi, origin='lower',
182 extent=[coords[1].min(), coords[1].max(),
183 coords[0].min(), coords[0].max()],
184 interpolation='nearest',
185 aspect='auto',
186 cmap='RdYlBu')
188 def plot_1d(self, axes, x, dim):
189 xb = self.xbounds[dim]
190 d = self.tree.xtols[dim]
191 coords = num.linspace(xb[0], xb[1], 1+int((xb[1]-xb[0])/d))
193 npoints = coords.size
194 points = num.empty((npoints, self.tree.ndim), dtype=float)
195 for idim in range(self.tree.ndim):
196 if idim == dim:
197 points[:, idim] = coords
198 else:
199 points[:, idim] = x[idim]
201 fi = self.interpolate_many(points)
202 if any_(num.isfinite(fi)):
203 fi = num.ma.masked_invalid(fi)
204 axes.plot(coords, fi)
206 def __iter__(self):
207 yield self
208 for c in self.children:
209 for x in c:
210 yield x
212 def dump(self, file):
213 self.index.astype('<i4').tofile(file)
214 self.f.astype('<f8').tofile(file)
215 for c in self.children:
216 c.dump(file)
219def bread(f, fmt):
220 s = f.read(struct.calcsize(fmt))
221 return struct.unpack(fmt, s)
224class SPTree(object):
225 '''
226 N-dimensional space partitioning interpolator.
228 :param f: callable function ``f(x)`` where ``x`` is a vector of size ``n``
229 :param ftol: target accuracy ``|f_interp(x) - f(x)| <= ftol``
230 :param xbounds: bounds of ``x``, shape ``(n, 2)``
231 :param xtols: target coarsenesses in ``x``, vector of size ``n``
232 :param addargs: additional arguments to pass to ``f``
233 '''
235 def __init__(self, f=None, ftol=None, xbounds=None, xtols=None,
236 filename=None, addargs=()):
238 if filename is None:
239 assert all(v is not None for v in (f, ftol, xbounds, xtols))
241 self.f = f
242 self.ftol = float(ftol)
243 self.f_values = {}
244 self.ncells = 0
245 self.addargs = addargs
247 self.xbounds = num.asarray(xbounds, dtype=float)
248 assert self.xbounds.ndim == 2
249 assert self.xbounds.shape[1] == 2
250 self.ndim = self.xbounds.shape[0]
252 self.xtols = num.asarray(xtols, dtype=float)
253 assert self.xtols.ndim == 1 and self.xtols.size == self.ndim
255 self.maxdepths = num.ceil(num.log2(
256 num.maximum(
257 1.0,
258 (self.xbounds[:, 1] - self.xbounds[:, 0]) / self.xtols)
259 )).astype(int)
261 self.root = None
262 self.ones_int = num.ones(self.ndim, dtype=int)
264 cc = num.ix_(*[num.arange(3)]*self.ndim)
265 w = num.zeros([3]*self.ndim + [self.ndim, 2])
266 for i, c in enumerate(cc):
267 w[..., i, 0] = (2-c)*0.5
268 w[..., i, 1] = c*0.5
270 self.pointmaker = w
271 self.pointmaker_mask = num.sum(w[..., 0] == 0.5, axis=-1) != 0
272 self.pointmaker_masked = w[self.pointmaker_mask]
274 self.nothing_found_yet = True
276 self.root = Cell(self, self.ones_int)
277 self.ncells += 1
279 self.fraction_bad = 0.0
280 self.nbad = 0
281 self.cells_to_continue = []
282 for clipdepth in range(0, num.max(self.maxdepths)+1):
283 self.clipdepth = clipdepth
284 self.tested = 0
285 if self.clipdepth == 0:
286 self._fill(self.root)
287 else:
288 self._continue_fill()
290 self.status()
292 if not self.cells_to_continue:
293 break
295 else:
296 self._load(filename)
298 def status(self):
299 perc = (1.0-self.fraction_bad)*100
300 s = '%6.1f%%' % perc
302 if self.fraction_bad != 0.0 and s == ' 100.0%':
303 s = '~100.0%'
305 logger.info('at level %2i: %s covered, %6i cell%s' % (
306 self.clipdepth, s, self.ncells, ['s', ''][self.ncells == 1]))
308 def __iter__(self):
309 return iter(self.root)
311 def __len__(self):
312 return self.ncells
314 def dump(self, filename):
315 with open(filename, 'wb') as file:
316 version = 1
317 file.write(b'SPITREE ')
318 file.write(struct.pack(
319 '<QQQd', version, self.ndim, self.ncells, self.ftol))
320 self.xbounds.astype('<f8').tofile(file)
321 self.xtols.astype('<f8').tofile(file)
322 self.root.dump(file)
324 def _load(self, filename):
325 with open(filename, 'rb') as file:
326 marker, version, self.ndim, self.ncells, self.ftol = bread(
327 file, '<8sQQQd')
328 assert marker == b'SPITREE '
329 assert version == 1
330 self.xbounds = num.fromfile(
331 file, dtype='<f8', count=self.ndim*2).reshape(self.ndim, 2)
332 self.xtols = num.fromfile(
333 file, dtype='<f8', count=self.ndim)
335 path = []
336 for icell in range(self.ncells):
337 index = num.fromfile(
338 file, dtype='<i4', count=self.ndim)
339 f = num.fromfile(
340 file, dtype='<f8', count=2**self.ndim).reshape(
341 [2]*self.ndim)
343 cell = Cell(self, index, f)
344 if not path:
345 self.root = cell
346 path.append(cell)
348 else:
349 while not any_(path[-1].index == (cell.index >> 1)):
350 path.pop()
352 path[-1].children.append(cell)
353 path.append(cell)
355 def _f_cached(self, x):
356 return getset(
357 self.f_values, tuple(float(xx) for xx in x), self.f, self.addargs)
359 def interpolate(self, x):
360 x = num.asarray(x, dtype=float)
361 assert x.ndim == 1 and x.size == self.ndim
362 if not all_(and_(self.xbounds[:, 0] <= x, x <= self.xbounds[:, 1])):
363 raise OutOfBounds()
365 return self.root.interpolate(x)
367 def __call__(self, x):
368 return self.interpolate(x)
370 def interpolate_many(self, x):
371 return self.root.interpolate_many(x)
373 def _continue_fill(self):
374 cells_to_continue, self.cells_to_continue = self.cells_to_continue, []
375 for cell in cells_to_continue:
376 self._deepen_cell(cell)
378 def _fill(self, cell):
380 self.tested += 1
381 xtestpoints = num.sum(cell.xbounds * self.pointmaker_masked, axis=-1)
383 fis = cell.interpolate_many(xtestpoints)
384 fes = num.array(
385 [self._f_cached(x) for x in xtestpoints], dtype=float)
387 iffes = num.isfinite(fes)
388 iffis = num.isfinite(fis)
389 works = iffes == iffis
390 iif = num.logical_and(iffes, iffis)
392 works[iif] *= num.abs(fes[iif] - fis[iif]) < self.ftol
394 nundef = num.sum(not_(num.isfinite(fes))) + \
395 num.sum(not_(num.isfinite(cell.f)))
397 some_undef = 0 < nundef < (xtestpoints.shape[0] + cell.f.size)
399 if any_(works):
400 self.nothing_found_yet = False
402 if not all_(works) or some_undef or self.nothing_found_yet:
403 deepen = self.ones_int.copy()
404 if not some_undef:
405 works_full = num.ones([3]*self.ndim, dtype=bool)
406 works_full[self.pointmaker_mask] = works
407 for idim in range(self.ndim):
408 dimcorners = [slice(None, None, 2)] * self.ndim
409 dimcorners[idim] = 1
410 if all_(works_full[tuple(dimcorners)]):
411 deepen[idim] = 0
413 if not any_(deepen):
414 deepen = self.ones_int
416 deepen = num.where(
417 cell.depths + deepen > self.maxdepths, 0, deepen)
419 cell.deepen = deepen
421 if any_(deepen) and all_(cell.depths + deepen <= self.clipdepth):
422 self._deepen_cell(cell)
423 else:
424 if any_(deepen):
425 self.cells_to_continue.append(cell)
427 cell.bad = True
428 self.fraction_bad += num.prod(1.0/2**cell.depths)
429 self.nbad += 1
431 def _deepen_cell(self, cell):
432 if cell.bad:
433 self.fraction_bad -= num.prod(1.0/2**cell.depths)
434 self.nbad -= 1
435 cell.bad = False
437 for iadd in num.ndindex(*(cell.deepen+1)):
438 index_child = (cell.index << cell.deepen) + iadd
439 child = Cell(self, index_child)
440 self.ncells += 1
441 cell.children.append(child)
442 self._fill(child)
444 def check_holes(self):
445 '''
446 Check for NaNs in :py:class:`SPTree`
447 '''
448 return self.root.check_holes()
450 def plot_2d(self, axes=None, x=None, dims=None):
451 assert self.ndim >= 2
453 if x is None:
454 x = num.zeros(self.ndim)
455 x[-2:] = None
457 x = num.asarray(x, dtype=float)
458 if dims is None:
459 dims = [i for (i, v) in enumerate(x) if not num.isfinite(v)]
461 assert len(dims) == 2
463 plt = None
464 if axes is None:
465 from matplotlib import pyplot as plt
466 axes = plt.gca()
468 self.root.plot_2d(axes, x, dims)
470 axes.set_xlabel('Dim %i' % dims[1])
471 axes.set_ylabel('Dim %i' % dims[0])
473 if plt:
474 plt.show()
476 def plot_1d(self, axes=None, x=None, dims=None):
478 if x is None:
479 x = num.zeros(self.ndim)
480 x[-1:] = None
482 x = num.asarray(x, dtype=float)
483 if dims is None:
484 dims = [i for (i, v) in enumerate(x) if not num.isfinite(v)]
486 assert len(dims) == 1
488 plt = None
489 if axes is None:
490 from matplotlib import pyplot as plt
491 axes = plt.gca()
493 self.root.plot_1d(axes, x, dims[0])
495 axes.set_xlabel('Dim %i' % dims[0])
497 if plt:
498 plt.show()
501def getset(d, k, f, addargs):
502 try:
503 return d[k]
504 except KeyError:
505 v = d[k] = f(k, *addargs)
506 return v
509def nditer_outer(x):
510 add = []
511 if x[-1] is None:
512 x_ = x[:-1]
513 add = [None]
514 else:
515 x_ = x
517 return num.nditer(
518 x,
519 op_axes=(num.identity(len(x_), dtype=int)-1).tolist() + add)
522if __name__ == '__main__':
523 logging.basicConfig(level=logging.INFO)
525 def f(x):
526 x0 = num.array([0.5, 0.5, 0.5])
527 r = 0.5
528 if num.sqrt(num.sum((x-x0)**2)) < r:
530 return x[2]**4 + x[1]
532 return None
534 tree = SPTree(f, 0.01, [[0., 1.], [0., 1.], [0., 1.]], [0.025, 0.05, 0.1])
536 import tempfile
537 import os
538 fid, fn = tempfile.mkstemp()
539 tree.dump(fn)
540 tree = SPTree(filename=fn)
541 os.unlink(fn)
543 from matplotlib import pyplot as plt
545 v = 0.5
546 axes = plt.subplot(2, 2, 1)
547 tree.plot_2d(axes, x=(v, None, None))
548 axes = plt.subplot(2, 2, 2)
549 tree.plot_2d(axes, x=(None, v, None))
550 axes = plt.subplot(2, 2, 3)
551 tree.plot_2d(axes, x=(None, None, v))
553 axes = plt.subplot(2, 2, 4)
554 tree.plot_1d(axes, x=(v, v, None))
556 plt.show()