import numpy as num
import logging
from pyrocko import gf, util
from pyrocko.guts import String, Float, Dict, Int, Bool
from grond.meta import expand_template, Parameter, has_get_plot_classes
from ..base import Problem, ProblemConfig
from .. import CMTProblem
guts_prefix = 'grond'
logger = logging.getLogger('grond.problems.rectangular.problem')
km = 1e3
as_km = dict(scale_factor=km, scale_unit='km')
[docs]class RectangularProblemConfig(ProblemConfig):
ranges = Dict.T(String.T(), gf.Range.T())
decimation_factor = Int.T(default=1)
distance_min = Float.T(default=0.)
nthreads = Int.T(default=4)
point_source_target_balancing = Bool.T(
default=False,
help='If ``True``, target balancing (if used) is performed on a '
'moment tensor point source at the events location. It increases '
'the speed, but might lead to not fully optimized target weights.'
)
[docs] def get_problem(self, event, target_groups, targets):
if self.decimation_factor != 1:
logger.warning(
'Decimation factor for rectangular source set to %i. Results '
'may be inaccurate.' % self.decimation_factor)
base_source = gf.RectangularSource.from_pyrocko_event(
event,
anchor='top',
decimation_factor=self.decimation_factor)
subs = dict(
event_name=event.name,
event_time=util.time_to_str(event.time))
cmt_problem = None
if self.point_source_target_balancing:
base_source_cmt = gf.MTSource.from_pyrocko_event(event)
stf = gf.HalfSinusoidSTF()
stf.duration = event.duration or 0.0
base_source_cmt.stf = stf
ranges = dict(
time=self.ranges['time'],
north_shift=self.ranges['north_shift'],
east_shift=self.ranges['east_shift'],
depth=self.ranges['depth'],
magnitude=gf.Range(
start=event.magnitude - 1.,
stop=event.magnitude + 1.),
duration=gf.Range(start=0., stop=stf.duration * 2.),
rmnn=gf.Range(start=-1.41421, stop=1.41421),
rmee=gf.Range(start=-1.41421, stop=1.41421),
rmdd=gf.Range(start=-1.41421, stop=1.41421),
rmne=gf.Range(start=-1., stop=1.),
rmnd=gf.Range(start=-1., stop=1.),
rmed=gf.Range(start=-1., stop=1.))
cmt_problem = CMTProblem(
name=expand_template(self.name_template, subs),
base_source=base_source_cmt,
distance_min=self.distance_min,
target_groups=target_groups,
targets=targets,
ranges=ranges,
mt_type='dc',
stf_type='HalfSinusoidSTF',
norm_exponent=self.norm_exponent,
nthreads=self.nthreads)
problem = RectangularProblem(
name=expand_template(self.name_template, subs),
base_source=base_source,
distance_min=self.distance_min,
target_groups=target_groups,
targets=targets,
ranges=self.ranges,
norm_exponent=self.norm_exponent,
nthreads=self.nthreads,
cmt_problem=cmt_problem)
return problem
[docs]@has_get_plot_classes
class RectangularProblem(Problem):
problem_parameters = [
Parameter('east_shift', 'm', label='Easting', **as_km),
Parameter('north_shift', 'm', label='Northing', **as_km),
Parameter('depth', 'm', label='Depth', **as_km),
Parameter('length', 'm', label='Length', optional=False, **as_km),
Parameter('width', 'm', label='Width', optional=False, **as_km),
Parameter('slip', 'm', label='Slip', optional=False),
Parameter('strike', 'deg', label='Strike'),
Parameter('dip', 'deg', label='Dip'),
Parameter('rake', 'deg', label='Rake')
]
problem_waveform_parameters = [
Parameter('nucleation_x', 'offset', label='Nucleation X'),
Parameter('nucleation_y', 'offset', label='Nucleation Y'),
Parameter('time', 's', label='Time'),
Parameter('velocity', 'm/s', label='Rupture Velocity')
]
dependants = []
distance_min = Float.T(default=0.0)
cmt_problem = Problem.T(optional=True)
def set_engine(self, engine):
self._engine = engine
if self.cmt_problem is not None:
self.cmt_problem.set_engine(engine)
def pack(self, source):
arr = self.get_parameter_array(source)
for ip, p in enumerate(self.parameters):
if p.name == 'time':
arr[ip] -= self.base_source.time
return arr
def get_source(self, x):
d = self.get_parameter_dict(x)
p = {}
for k in self.base_source.keys():
if k in d:
p[k] = float(
self.ranges[k].make_relative(self.base_source[k], d[k]))
source = self.base_source.clone(**p)
return source
def random_uniform(self, xbounds, rstate, fixed_magnitude=None):
x = num.zeros(self.nparameters)
for i in range(self.nparameters):
x[i] = rstate.uniform(xbounds[i, 0], xbounds[i, 1])
return x
def preconstrain(self, x, optimizer=False):
# source = self.get_source(x)
# if any(self.distance_min > source.distance_to(t)
# for t in self.targets):
# raise Forbidden()
return x
@classmethod
def get_plot_classes(cls):
plots = super(RectangularProblem, cls).get_plot_classes()
return plots
__all__ = '''
RectangularProblem
RectangularProblemConfig
'''.split()