Coverage for /usr/local/lib/python3.11/dist-packages/grond/core.py: 52%

523 statements  

« prev     ^ index     » next       coverage.py v6.5.0, created at 2023-10-26 18:31 +0000

1from __future__ import print_function 

2 

3import sys 

4import logging 

5import time 

6import copy 

7import shutil 

8import glob 

9import math 

10import os 

11import numpy as num 

12from contextlib import contextmanager 

13 

14from pyrocko.guts import Object, String, Float, List 

15from pyrocko import gf, trace, guts, util, weeding 

16from pyrocko import parimap, model, marker as pmarker 

17 

18from .dataset import NotFound, InvalidObject 

19from .problems.base import Problem, load_problem_info_and_data, \ 

20 load_problem_data, ProblemDataNotAvailable 

21 

22from .optimisers.base import BadProblem 

23from .targets.waveform.target import WaveformMisfitResult 

24from .targets.base import dump_misfit_result_collection, \ 

25 MisfitResultCollection, MisfitResult, MisfitResultError 

26from .meta import expand_template, GrondError, selected 

27from .environment import Environment 

28from .monitor import GrondMonitor 

29from .config import get_global_config 

30 

31logger = logging.getLogger('grond.core') 

32guts_prefix = 'grond' 

33op = os.path 

34 

35 

36class RingBuffer(num.ndarray): 

37 def __new__(cls, *args, **kwargs): 

38 cls = num.ndarray.__new__(cls, *args, **kwargs) 

39 cls.fill(0.) 

40 return cls 

41 

42 def __init__(self, *args, **kwargs): 

43 self.pos = 0 

44 

45 def put(self, value): 

46 self[self.pos] = value 

47 self.pos += 1 

48 self.pos %= self.size 

49 

50 

51def mahalanobis_distance(xs, mx, cov): 

52 imask = num.diag(cov) != 0. 

53 icov = num.linalg.inv(cov[imask, :][:, imask]) 

54 temp = xs[:, imask] - mx[imask] 

55 return num.sqrt(num.sum(temp * num.dot(icov, temp.T).T, axis=1)) 

56 

57 

58@contextmanager 

59def lock_rundir(rundir): 

60 statefn = op.join(rundir, '.running') 

61 if op.exists(statefn): 

62 raise EnvironmentError('file %s already exists!' % statefn) 

63 try: 

64 with open(statefn, 'w') as f: 

65 f.write('') 

66 yield True 

67 finally: 

68 os.remove(statefn) 

69 

70 

71class DirectoryAlreadyExists(GrondError): 

72 pass 

73 

74 

75def weed(origin, targets, limit, neighborhood=3): 

76 

77 azimuths = num.zeros(len(targets)) 

78 dists = num.zeros(len(targets)) 

79 for i, target in enumerate(targets): 

80 _, azimuths[i] = target.azibazi_to(origin) 

81 dists[i] = target.distance_to(origin) 

82 

83 badnesses = num.ones(len(targets), dtype=float) 

84 deleted, meandists_kept = weeding.weed( 

85 azimuths, dists, badnesses, 

86 nwanted=limit, 

87 neighborhood=neighborhood) 

88 

89 targets_weeded = [ 

90 target for (delete, target) in zip(deleted, targets) if not delete] 

91 

92 return targets_weeded, meandists_kept, deleted 

93 

94 

95def sarr(a): 

96 return ' '.join('%15g' % x for x in a) 

97 

98 

99def forward(env, show='filtered'): 

100 payload = [] 

101 if env.have_rundir(): 

102 env.setup_modelling() 

103 history = env.get_history(subset='harvest') 

104 xbest = history.get_best_model() 

105 problem = env.get_problem() 

106 ds = env.get_dataset() 

107 payload.append((ds, problem, xbest)) 

108 

109 else: 

110 for event_name in env.get_selected_event_names(): 

111 env.set_current_event_name(event_name) 

112 env.setup_modelling() 

113 problem = env.get_problem() 

114 ds = env.get_dataset() 

115 xref = problem.preconstrain(problem.get_reference_model()) 

116 payload.append((ds, problem, xref)) 

117 

118 all_trs = [] 

119 events = [] 

120 stations = {} 

121 for (ds, problem, x) in payload: 

122 results = problem.evaluate(x) 

123 

124 event = problem.get_source(x).pyrocko_event() 

125 events.append(event) 

126 

127 for result in results: 

128 if isinstance(result, WaveformMisfitResult): 

129 if show == 'filtered': 

130 result.filtered_obs.set_codes(location='ob') 

131 result.filtered_syn.set_codes(location='sy') 

132 all_trs.append(result.filtered_obs) 

133 all_trs.append(result.filtered_syn) 

134 elif show == 'processed': 

135 result.processed_obs.set_codes(location='ob') 

136 result.processed_syn.set_codes(location='sy') 

137 all_trs.append(result.processed_obs) 

138 all_trs.append(result.processed_syn) 

139 else: 

140 raise ValueError('Invalid argument for show: %s' % show) 

141 

142 for station in ds.get_stations(): 

143 stations[station.nsl()] = station 

144 

145 markers = [] 

146 for ev in events: 

147 markers.append(pmarker.EventMarker(ev)) 

148 

149 trace.snuffle(all_trs, markers=markers, stations=list(stations.values())) 

150 

151 

152def harvest( 

153 rundir, problem=None, nbest=10, force=False, weed=0, 

154 export_fits=[]): 

155 

156 env = Environment([rundir]) 

157 optimiser = env.get_optimiser() 

158 nchains = env.get_optimiser().nchains 

159 

160 if problem is None: 

161 problem, xs, misfits, bootstrap_misfits, _ = \ 

162 load_problem_info_and_data(rundir, nchains=nchains) 

163 else: 

164 xs, misfits, bootstrap_misfits, _ = \ 

165 load_problem_data(rundir, problem, nchains=nchains) 

166 

167 logger.info('Harvesting problem "%s"...' % problem.name) 

168 

169 dumpdir = op.join(rundir, 'harvest') 

170 if op.exists(dumpdir): 

171 if force: 

172 shutil.rmtree(dumpdir) 

173 else: 

174 raise DirectoryAlreadyExists( 

175 'Harvest directory already exists: %s' % dumpdir) 

176 

177 util.ensuredir(dumpdir) 

178 

179 ibests_list = [] 

180 ibests = [] 

181 gms = bootstrap_misfits[:, 0] 

182 isort = num.argsort(gms) 

183 

184 ibests_list.append(isort[:nbest]) 

185 

186 if weed != 3: 

187 for ibootstrap in range(optimiser.nbootstrap): 

188 bms = bootstrap_misfits[:, ibootstrap] 

189 isort = num.argsort(bms) 

190 ibests_list.append(isort[:nbest]) 

191 ibests.append(isort[0]) 

192 

193 if weed: 

194 mean_gm_best = num.median(gms[ibests]) 

195 std_gm_best = num.std(gms[ibests]) 

196 ibad = set() 

197 

198 for ibootstrap, ibest in enumerate(ibests): 

199 if gms[ibest] > mean_gm_best + std_gm_best: 

200 ibad.add(ibootstrap) 

201 

202 ibests_list = [ 

203 ibests_ for (ibootstrap, ibests_) in enumerate(ibests_list) 

204 if ibootstrap not in ibad] 

205 

206 ibests = num.concatenate(ibests_list) 

207 

208 if weed == 2: 

209 ibests = ibests[gms[ibests] < mean_gm_best] 

210 

211 for i in ibests: 

212 problem.dump_problem_data(dumpdir, xs[i], misfits[i, :, :]) 

213 

214 if export_fits: 

215 env.setup_modelling() 

216 problem = env.get_problem() 

217 history = env.get_history(subset='harvest') 

218 

219 for what in export_fits: 

220 if what == 'best': 

221 models = [history.get_best_model()] 

222 elif what == 'mean': 

223 models = [history.get_mean_model()] 

224 elif what == 'ensemble': 

225 models = history.models 

226 else: 

227 raise GrondError( 

228 'Invalid option for harvest\'s export_fits argument: %s' 

229 % what) 

230 

231 results = [] 

232 for x in models: 

233 results.append([ 

234 (result if isinstance(result, MisfitResult) 

235 else MisfitResultError(message=str(result))) for 

236 result in problem.evaluate(x)]) 

237 

238 emr = MisfitResultCollection(results=results) 

239 

240 dump_misfit_result_collection( 

241 emr, 

242 op.join(dumpdir, 'fits-%s.yaml' % what)) 

243 

244 logger.info('Done harvesting problem "%s".' % problem.name) 

245 

246 

247def cluster(rundir, clustering, metric): 

248 env = Environment([rundir]) 

249 history = env.get_history(subset='harvest') 

250 problem = history.problem 

251 models = history.models 

252 

253 events = [problem.get_source(model).pyrocko_event() for model in models] 

254 

255 from grond.clustering import metrics 

256 

257 if metric not in metrics.metrics: 

258 raise GrondError('Unknown metric: %s' % metric) 

259 

260 mat = metrics.compute_similarity_matrix(events, metric) 

261 

262 clusters = clustering.perform(mat) 

263 

264 labels = num.sort(num.unique(clusters)) 

265 bins = num.concatenate((labels, [labels[-1]+1])) 

266 ns = num.histogram(clusters, bins)[0] 

267 

268 history.set_attribute('cluster', clusters) 

269 

270 for i in range(labels.size): 

271 if labels[i] == -1: 

272 logging.info( 

273 'Number of unclustered events: %5i' % ns[i]) 

274 else: 

275 logging.info( 

276 'Number of events in cluster %i: %5i' % (labels[i], ns[i])) 

277 

278 

279def get_event_names(config): 

280 return config.get_event_names() 

281 

282 

283def check_problem(problem): 

284 if len(problem.targets) == 0: 

285 raise GrondError('No targets available') 

286 

287 

288def check( 

289 config, 

290 event_names=None, 

291 target_string_ids=None, 

292 show_waveforms=False, 

293 n_random_synthetics=10, 

294 stations_used_path=None): 

295 

296 markers = [] 

297 stations_used = {} 

298 erroneous = [] 

299 for ievent, event_name in enumerate(event_names): 

300 ds = config.get_dataset(event_name) 

301 event = ds.get_event() 

302 trs_all = [] 

303 try: 

304 problem = config.get_problem(event) 

305 

306 _, nfamilies = problem.get_family_mask() 

307 logger.info('Problem: %s' % problem.name) 

308 logger.info('Number of target families: %i' % nfamilies) 

309 logger.info('Number of targets (total): %i' % len(problem.targets)) 

310 

311 if target_string_ids: 

312 problem.targets = [ 

313 target for target in problem.targets 

314 if util.match_nslc(target_string_ids, target.string_id())] 

315 

316 logger.info( 

317 'Number of targets (selected): %i' % len(problem.targets)) 

318 

319 check_problem(problem) 

320 

321 results_list = [] 

322 sources = [] 

323 if n_random_synthetics == 0: 

324 x = problem.preconstrain(problem.get_reference_model()) 

325 sources.append(problem.base_source) 

326 results = problem.evaluate(x) 

327 results_list.append(results) 

328 

329 else: 

330 for i in range(n_random_synthetics): 

331 x = problem.get_random_model() 

332 sources.append(problem.get_source(x)) 

333 results = problem.evaluate(x) 

334 results_list.append(results) 

335 

336 if show_waveforms: 

337 engine = config.engine_config.get_engine() 

338 times = [] 

339 tdata = [] 

340 for target in problem.targets: 

341 tobs_shift_group = [] 

342 tcuts = [] 

343 for source in sources: 

344 tmin_fit, tmax_fit, tfade, tfade_taper = \ 

345 target.get_taper_params(engine, source) 

346 

347 times.extend((tmin_fit-tfade*2., tmax_fit+tfade*2.)) 

348 

349 tobs, tsyn = target.get_pick_shift(engine, source) 

350 if None not in (tobs, tsyn): 

351 tobs_shift = tobs - tsyn 

352 else: 

353 tobs_shift = 0.0 

354 

355 tcuts.append(target.get_cutout_timespan( 

356 tmin_fit+tobs_shift, tmax_fit+tobs_shift, tfade)) 

357 

358 tobs_shift_group.append(tobs_shift) 

359 

360 tcuts = num.array(tcuts, dtype=float) 

361 

362 tdata.append(( 

363 tfade, 

364 num.mean(tobs_shift_group), 

365 (num.min(tcuts[:, 0]), num.max(tcuts[:, 1])))) 

366 

367 tmin = min(times) 

368 tmax = max(times) 

369 

370 tmax += (tmax-tmin)*2 

371 

372 for (tfade, tobs_shift, tcut), target in zip( 

373 tdata, problem.targets): 

374 

375 store = engine.get_store(target.store_id) 

376 

377 deltat = store.config.deltat 

378 

379 freqlimits = list(target.get_freqlimits()) 

380 freqlimits[2] = 0.45/deltat 

381 freqlimits[3] = 0.5/deltat 

382 freqlimits = tuple(freqlimits) 

383 

384 try: 

385 trs_projected, trs_restituted, trs_raw, _ = \ 

386 ds.get_waveform( 

387 target.codes, 

388 tmin=tmin+tobs_shift, 

389 tmax=tmax+tobs_shift, 

390 tfade=tfade, 

391 freqlimits=freqlimits, 

392 deltat=deltat, 

393 backazimuth=target. 

394 get_backazimuth_for_waveform(), 

395 debug=True) 

396 

397 except NotFound as e: 

398 logger.warning(str(e)) 

399 continue 

400 

401 trs_projected = copy.deepcopy(trs_projected) 

402 trs_restituted = copy.deepcopy(trs_restituted) 

403 trs_raw = copy.deepcopy(trs_raw) 

404 

405 for trx in trs_projected + trs_restituted + trs_raw: 

406 trx.shift(-tobs_shift) 

407 trx.set_codes( 

408 network='', 

409 station=target.string_id(), 

410 location='') 

411 

412 for trx in trs_projected: 

413 trx.set_codes(location=trx.location + '2_proj') 

414 

415 for trx in trs_restituted: 

416 trx.set_codes(location=trx.location + '1_rest') 

417 

418 for trx in trs_raw: 

419 trx.set_codes(location=trx.location + '0_raw') 

420 

421 trs_all.extend(trs_projected) 

422 trs_all.extend(trs_restituted) 

423 trs_all.extend(trs_raw) 

424 

425 for source in sources: 

426 tmin_fit, tmax_fit, tfade, tfade_taper = \ 

427 target.get_taper_params(engine, source) 

428 

429 markers.append(pmarker.Marker( 

430 nslc_ids=[('', target.string_id(), '*_proj', '*')], 

431 tmin=tmin_fit, tmax=tmax_fit)) 

432 

433 markers.append(pmarker.Marker( 

434 nslc_ids=[('', target.string_id(), '*_raw', '*')], 

435 tmin=tcut[0]-tobs_shift, tmax=tcut[1]-tobs_shift, 

436 kind=1)) 

437 

438 else: 

439 for itarget, target in enumerate(problem.targets): 

440 

441 nok = 0 

442 for results in results_list: 

443 result = results[itarget] 

444 if not isinstance(result, gf.SeismosizerError): 

445 nok += 1 

446 

447 if nok == 0: 

448 sok = 'not used' 

449 elif nok == len(results_list): 

450 sok = 'ok' 

451 try: 

452 s = ds.get_station(target) 

453 stations_used[s.nsl()] = s 

454 except (NotFound, InvalidObject): 

455 pass 

456 else: 

457 sok = 'not used (%i/%i ok)' % (nok, len(results_list)) 

458 

459 logger.info('%-40s %s' % ( 

460 (target.string_id() + ':', sok))) 

461 

462 except GrondError as e: 

463 logger.error('Event %i, "%s": %s' % ( 

464 ievent, 

465 event.name or util.time_to_str(event.time), 

466 str(e))) 

467 

468 erroneous.append(event) 

469 

470 if show_waveforms: 

471 trace.snuffle(trs_all, stations=ds.get_stations(), markers=markers) 

472 

473 if stations_used_path: 

474 stations = list(stations_used.values()) 

475 stations.sort(key=lambda s: s.nsl()) 

476 model.dump_stations(stations, stations_used_path) 

477 

478 if erroneous: 

479 raise GrondError( 

480 'Check failed for events: %s' 

481 % ', '.join(ev.name for ev in erroneous)) 

482 

483 

484g_state = {} 

485 

486 

487def go(environment, force=False, preserve=False): 

488 

489 global_config = get_global_config() 

490 

491 g_data = (environment, force, preserve, global_config) 

492 g_state[id(g_data)] = g_data 

493 

494 nevents = environment.nevents_selected 

495 for x in parimap.parimap( 

496 process_event, 

497 range(environment.nevents_selected), 

498 [id(g_data)] * nevents, 

499 nprocs=global_config.nparallel): 

500 

501 pass 

502 

503 

504def process_event(ievent, g_data_id): 

505 

506 environment, force, preserve, global_config = g_state[g_data_id] 

507 

508 config = environment.get_config() 

509 event_name = environment.get_selected_event_names()[ievent] 

510 nevents = environment.nevents_selected 

511 

512 ds = config.get_dataset(event_name) 

513 event = ds.get_event() 

514 problem = config.get_problem(event) 

515 

516 tstart = time.time() 

517 monitor = None 

518 rundir = None 

519 try: 

520 

521 synt = ds.synthetic_test 

522 if synt: 

523 problem.base_source = problem.get_source(synt.get_x()) 

524 

525 check_problem(problem) 

526 

527 rundir = expand_template( 

528 config.rundir_template, 

529 dict(problem_name=problem.name)) 

530 environment.set_rundir_path(rundir) 

531 

532 if op.exists(rundir): 

533 if preserve: 

534 nold_rundirs = len(glob.glob(rundir + '*')) 

535 shutil.move(rundir, rundir+'-old-%d' % (nold_rundirs)) 

536 elif force: 

537 shutil.rmtree(rundir) 

538 else: 

539 logger.warning( 

540 'Skipping problem "%s": rundir already exists: %s' % ( 

541 problem.name, rundir)) 

542 return 

543 

544 util.ensuredir(rundir) 

545 

546 logger.info( 

547 'Starting event %i / %i' % (ievent+1, nevents)) 

548 

549 logger.info('Rundir: %s' % rundir) 

550 

551 logger.info('Analysing problem "%s".' % problem.name) 

552 

553 for analyser_conf in config.analyser_configs: 

554 analyser = analyser_conf.get_analyser() 

555 analyser.analyse(problem, ds) 

556 

557 basepath = config.get_basepath() 

558 config.change_basepath(rundir) 

559 guts.dump(config, filename=op.join(rundir, 'config.yaml')) 

560 config.change_basepath(basepath) 

561 

562 optimiser = config.optimiser_config.get_optimiser() 

563 

564 optimiser.init_bootstraps(problem) 

565 problem.dump_problem_info(rundir) 

566 

567 xs_inject = None 

568 synt = ds.synthetic_test 

569 if synt and synt.inject_solution: 

570 xs_inject = synt.get_x()[num.newaxis, :] 

571 

572 if xs_inject is not None: 

573 from .optimisers import highscore 

574 if not isinstance(optimiser, highscore.HighScoreOptimiser): 

575 raise GrondError( 

576 'Optimiser does not support injections.') 

577 

578 optimiser.sampler_phases[0:0] = [ 

579 highscore.InjectionSamplerPhase(xs_inject=xs_inject)] 

580 

581 gconf = get_global_config() 

582 with lock_rundir(rundir): 

583 if gconf.status == 'state': 

584 monitor = GrondMonitor.watch(rundir) 

585 optimiser.optimise( 

586 problem, 

587 rundir=rundir) 

588 

589 harvest(rundir, problem, force=True) 

590 

591 except BadProblem as e: 

592 logger.error(str(e)) 

593 

594 except GrondError as e: 

595 logger.error(str(e)) 

596 

597 finally: 

598 if monitor: 

599 monitor.terminate() 

600 

601 tstop = time.time() 

602 logger.info( 

603 'Stop %i / %i (%g min)' % (ievent+1, nevents, (tstop - tstart)/60.)) 

604 

605 if rundir: 

606 logger.info( 

607 'Done with problem "%s", rundir is "%s".' % (problem.name, rundir)) 

608 

609 

610class ParameterStats(Object): 

611 name = String.T() 

612 mean = Float.T() 

613 std = Float.T() 

614 best = Float.T() 

615 minimum = Float.T() 

616 percentile5 = Float.T() 

617 percentile16 = Float.T() 

618 median = Float.T() 

619 percentile84 = Float.T() 

620 percentile95 = Float.T() 

621 maximum = Float.T() 

622 

623 def __init__(self, *args, **kwargs): 

624 kwargs.update(zip(self.T.propnames, args)) 

625 Object.__init__(self, **kwargs) 

626 

627 def get_values_dict(self): 

628 return dict( 

629 (self.name+'.' + k, getattr(self, k)) 

630 for k in self.T.propnames 

631 if k != 'name') 

632 

633 

634class ResultStats(Object): 

635 problem = Problem.T() 

636 parameter_stats_list = List.T(ParameterStats.T()) 

637 

638 def get_values_dict(self): 

639 d = {} 

640 for ps in self.parameter_stats_list: 

641 d.update(ps.get_values_dict()) 

642 return d 

643 

644 

645def make_stats(problem, models, gms, pnames=None): 

646 ibest = num.argmin(gms) 

647 rs = ResultStats(problem=problem) 

648 if pnames is None: 

649 pnames = problem.parameter_names 

650 

651 for pname in pnames: 

652 iparam = problem.name_to_index(pname) 

653 vs = problem.extract(models, iparam) 

654 mi, p5, p16, median, p84, p95, ma = map(float, num.percentile( 

655 vs, [0., 5., 16., 50., 84., 95., 100.])) 

656 

657 mean = float(num.mean(vs)) 

658 std = float(num.std(vs)) 

659 best = float(vs[ibest]) 

660 s = ParameterStats( 

661 pname, mean, std, best, mi, p5, p16, median, p84, p95, ma) 

662 

663 rs.parameter_stats_list.append(s) 

664 

665 return rs 

666 

667 

668def try_add_location_uncertainty(data, types): 

669 vs = [data.get(k, None) for k in ( 

670 'north_shift.std', 'east_shift.std', 'depth.std')] 

671 

672 if None not in vs: 

673 data['location_uncertainty'] = math.sqrt(sum(v**2 for v in vs)) 

674 types['location_uncertainty'] = float 

675 

676 

677def format_stats(rs, fmt): 

678 pname_to_pindex = dict( 

679 (p.name, i) for (i, p) in enumerate(rs.parameter_stats_list)) 

680 

681 values = [] 

682 headers = [] 

683 for x in fmt: 

684 if x == 'problem.name': 

685 headers.append(x) 

686 values.append('%-16s' % rs.problem.name) 

687 else: 

688 pname, qname = x.split('.') 

689 pindex = pname_to_pindex[pname] 

690 values.append( 

691 '%16.7g' % getattr(rs.parameter_stats_list[pindex], qname)) 

692 headers.append(x) 

693 

694 return ' '.join(values) 

695 

696 

697def export( 

698 what, rundirs, type=None, pnames=None, filename=None, selection=None, 

699 effective_lat_lon=False): 

700 

701 if pnames is not None: 

702 pnames_clean = [ 

703 pname.split('.')[0] for pname in pnames 

704 if not pname.startswith('problem.')] 

705 shortform = all(len(pname.split('.')) == 2 for pname in pnames) 

706 else: 

707 pnames_clean = None 

708 shortform = False 

709 

710 if what == 'stats' and type is not None: 

711 raise GrondError('Invalid argument combination: what=%s, type=%s' % ( 

712 repr(what), repr(type))) 

713 

714 if what != 'stats' and shortform: 

715 raise GrondError('Invalid argument combination: what=%s, pnames=%s' % ( 

716 repr(what), repr(pnames))) 

717 

718 if what != 'stats' and type != 'vector' and pnames is not None: 

719 raise GrondError( 

720 'Invalid argument combination: what=%s, type=%s, pnames=%s' % ( 

721 repr(what), repr(type), repr(pnames))) 

722 

723 if filename is None: 

724 out = sys.stdout 

725 else: 

726 out = open(filename, 'w') 

727 

728 if type is None: 

729 type = 'event' 

730 

731 if shortform: 

732 print('#', ' '.join(['%16s' % x for x in pnames]), file=out) 

733 

734 def dump(x, gm, indices): 

735 if type == 'vector': 

736 print(' ', ' '.join( 

737 '%16.7g' % problem.extract(x, i) for i in indices), 

738 '%16.7g' % gm, file=out) 

739 

740 elif type == 'source': 

741 source = problem.get_source(x) 

742 if effective_lat_lon: 

743 source.set_origin(*source.effective_latlon) 

744 guts.dump(source, stream=out) 

745 

746 elif type == 'event': 

747 ev = problem.get_source(x).pyrocko_event() 

748 if effective_lat_lon: 

749 ev.set_origin(*ev.effective_latlon) 

750 

751 model.dump_events([ev], stream=out) 

752 

753 elif type == 'event-yaml': 

754 ev = problem.get_source(x).pyrocko_event() 

755 if effective_lat_lon: 

756 ev.set_origin(*ev.effective_latlon) 

757 guts.dump_all([ev], stream=out) 

758 

759 else: 

760 raise GrondError('Invalid argument: type=%s' % repr(type)) 

761 

762 header = None 

763 for rundir in rundirs: 

764 env = Environment(rundir) 

765 info = env.get_run_info() 

766 

767 try: 

768 history = env.get_history(subset='harvest') 

769 except ProblemDataNotAvailable as e: 

770 logger.error( 

771 'Harvest not available (Did the run succeed?): %s' % str(e)) 

772 continue 

773 

774 problem = history.problem 

775 models = history.models 

776 misfits = history.get_primary_chain_misfits() 

777 

778 if selection: 

779 rs = make_stats( 

780 problem, models, 

781 history.get_primary_chain_misfits()) 

782 

783 data = dict(tags=info.tags) 

784 types = dict(tags=(list, str)) 

785 

786 for k, v in rs.get_values_dict().items(): 

787 data[k] = v 

788 types[k] = float 

789 

790 try_add_location_uncertainty(data, types) 

791 

792 if not selected(selection, data=data, types=types): 

793 continue 

794 

795 else: 

796 rs = None 

797 

798 if type == 'vector': 

799 pnames_take = pnames_clean or \ 

800 problem.parameter_names[:problem.nparameters] 

801 

802 indices = num.array( 

803 [problem.name_to_index(pname) for pname in pnames_take]) 

804 

805 if type == 'vector' and what in ('best', 'mean', 'ensemble'): 

806 extra = ['global_misfit'] 

807 else: 

808 extra = [] 

809 

810 new_header = '# ' + ' '.join( 

811 '%16s' % x for x in pnames_take + extra) 

812 

813 if type == 'vector' and header != new_header: 

814 print(new_header, file=out) 

815 

816 header = new_header 

817 else: 

818 indices = None 

819 

820 if what == 'best': 

821 x_best = history.get_best_model() 

822 gm_best = history.get_best_misfit() 

823 dump(x_best, gm_best, indices) 

824 

825 elif what == 'mean': 

826 x_mean = history.get_mean_model() 

827 gm_mean = history.get_mean_misfit(chain=0) 

828 dump(x_mean, gm_mean, indices) 

829 

830 elif what == 'ensemble': 

831 isort = num.argsort(misfits) 

832 for i in isort: 

833 dump(models[i], misfits[i], indices) 

834 

835 elif what == 'stats': 

836 if not rs: 

837 rs = make_stats(problem, models, 

838 history.get_primary_chain_misfits(), 

839 pnames_clean) 

840 

841 if shortform: 

842 print(' ', format_stats(rs, pnames), file=out) 

843 else: 

844 print(rs, file=out) 

845 

846 else: 

847 raise GrondError('Invalid argument: what=%s' % repr(what)) 

848 

849 if out is not sys.stdout: 

850 out.close() 

851 

852 

853__all__ = ''' 

854 DirectoryAlreadyExists 

855 forward 

856 harvest 

857 cluster 

858 go 

859 get_event_names 

860 check 

861 export 

862'''.split()