1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

# http://pyrocko.org - GPLv3 

# 

# The Pyrocko Developers, 21st Century 

# ---|P------/S----------~Lg---------- 

from __future__ import division, absolute_import 

 

import math 

import numpy as num 

 

from .moment_tensor import euler_to_matrix 

from .config import config 

from .plot.beachball import spoly_cut 

 

from matplotlib.path import Path 

 

d2r = math.pi/180. 

r2d = 1./d2r 

earth_oblateness = 1./298.257223563 

earthradius_equator = 6378.14 * 1000. 

earthradius = config().earthradius 

d2m = earthradius_equator*math.pi/180. 

m2d = 1./d2m 

 

_testpath = Path([(0, 0), (0, 1), (1, 1), (1, 0), (0, 0)], closed=True) 

 

raise_if_slow_path_contains_points = False 

 

 

class Slow(Exception): 

pass 

 

 

if hasattr(_testpath, 'contains_points') and num.all( 

_testpath.contains_points([(0.5, 0.5), (1.5, 0.5)]) == [True, False]): 

 

def path_contains_points(verts, points): 

p = Path(verts, closed=True) 

return p.contains_points(points).astype(num.bool) 

 

else: 

# work around missing contains_points and bug in matplotlib ~ v1.2.0 

 

def path_contains_points(verts, points): 

if raise_if_slow_path_contains_points: 

# used by unit test to skip slow gshhg_example.py 

raise Slow() 

 

p = Path(verts, closed=True) 

result = num.zeros(points.shape[0], dtype=num.bool) 

for i in range(result.size): 

result[i] = p.contains_point(points[i, :]) 

 

return result 

 

 

try: 

cbrt = num.cbrt 

except AttributeError: 

def cbrt(x): 

return x**(1./3.) 

 

 

def float_array_broadcast(*args): 

return num.broadcast_arrays(*[ 

num.asarray(x, dtype=num.float) for x in args]) 

 

 

class Loc(object): 

'''Simple location representation 

 

:attrib lat: Latitude degree 

:attrib lon: Longitude degree 

''' 

def __init__(self, lat, lon): 

self.lat = lat 

self.lon = lon 

 

 

def clip(x, mi, ma): 

''' Clipping data array ``x`` 

 

:param x: Continunous data to be clipped 

:param mi: Clip minimum 

:param ma: Clip maximum 

:type x: :py:class:`numpy.ndarray` 

:type mi: float 

:type ma: float 

 

:return: Clipped data 

:rtype: :py:class:`numpy.ndarray` 

''' 

return num.minimum(num.maximum(mi, x), ma) 

 

 

def wrap(x, mi, ma): 

'''Wrapping continuous data to fundamental phase values. 

 

.. math:: 

x_{\\mathrm{wrapped}} = x_{\\mathrm{cont},i} - 

\\frac{ x_{\\mathrm{cont},i} - r_{\\mathrm{min}} } 

{ r_{\\mathrm{max}} - r_{\\mathrm{min}}} 

\\cdot ( r_{\\mathrm{max}} - r_{\\mathrm{min}}),\\quad 

x_{\\mathrm{wrapped}}\\; \\in 

\\;[ r_{\\mathrm{min}},\\, r_{\\mathrm{max}}]. 

 

:param x: Continunous data to be wrapped 

:param mi: Minimum value of wrapped data 

:param ma: Maximum value of wrapped data 

:type x: :py:class:`numpy.ndarray` 

:type mi: float 

:type ma: float 

 

:return: Wrapped data 

:rtype: :py:class:`numpy.ndarray` 

''' 

return x - num.floor((x-mi)/(ma-mi)) * (ma-mi) 

 

 

def _latlon_pair(args): 

if len(args) == 2: 

a, b = args 

return a.lat, a.lon, b.lat, b.lon 

 

elif len(args) == 4: 

return args 

 

 

def cosdelta(*args): 

'''Cosine of the angular distance between two points ``a`` and ``b`` on 

a sphere. 

 

This function (find implementation below) returns the cosine of the 

distance angle 'delta' between two points ``a`` and ``b``, coordinates of 

which are expected to be given in geographical coordinates and in degrees. 

For numerical stability a maximum of 1.0 is enforced. 

 

.. math:: 

 

A_{\\mathrm{lat'}} = \\frac{ \\pi}{180} \\cdot A_{lat}, \\quad 

A_{\\mathrm{lon'}} = \\frac{ \\pi}{180} \\cdot A_{lon}, \\quad 

B_{\\mathrm{lat'}} = \\frac{ \\pi}{180} \\cdot B_{lat}, \\quad 

B_{\\mathrm{lon'}} = \\frac{ \\pi}{180} \\cdot B_{lon}\\\\[0.5cm] 

 

\\cos(\\Delta) = \\min( 1.0, \\quad \\sin( A_{\\mathrm{lat'}}) 

\\sin( B_{\\mathrm{lat'}} ) + 

\\cos(A_{\\mathrm{lat'}}) \\cos( B_{\\mathrm{lat'}} ) 

\\cos( B_{\\mathrm{lon'}} - A_{\\mathrm{lon'}} ) 

 

:param a: Location point A 

:type a: :py:class:`pyrocko.orthodrome.Loc` 

:param b: Location point B 

:type b: :py:class:`pyrocko.orthodrome.Loc` 

 

:return: cosdelta 

:rtype: float 

''' 

 

alat, alon, blat, blon = _latlon_pair(args) 

 

return min( 

1.0, 

math.sin(alat*d2r) * math.sin(blat*d2r) + 

math.cos(alat*d2r) * math.cos(blat*d2r) * 

math.cos(d2r*(blon-alon))) 

 

 

def cosdelta_numpy(a_lats, a_lons, b_lats, b_lons): 

'''Cosine of the angular distance between two points ``a`` and ``b`` 

on a sphere. 

 

This function returns the cosines of the distance 

angles *delta* between two points ``a`` and ``b`` given as 

:py:class:`numpy.ndarray`. 

The coordinates are expected to be given in geographical coordinates 

and in degrees. For numerical stability a maximum of ``1.0`` is enforced. 

 

Please find the details of the implementation in the documentation of 

the function :py:func:`pyrocko.orthodrome.cosdelta` above. 

 

:param a_lats: Latitudes (degree) point A 

:param a_lons: Longitudes (degree) point A 

:param b_lats: Latitudes (degree) point B 

:param b_lons: Longitudes (degree) point B 

:type a_lats: :py:class:`numpy.ndarray` 

:type a_lons: :py:class:`numpy.ndarray` 

:type b_lats: :py:class:`numpy.ndarray` 

:type b_lons: :py:class:`numpy.ndarray` 

 

:return: cosdelta 

:type b_lons: :py:class:`numpy.ndarray`, ``(N)`` 

''' 

return num.minimum( 

1.0, 

num.sin(a_lats*d2r) * num.sin(b_lats*d2r) + 

num.cos(a_lats*d2r) * num.cos(b_lats*d2r) * 

num.cos(d2r*(b_lons-a_lons))) 

 

 

def azimuth(*args): 

'''Azimuth calculation 

 

This function (find implementation below) returns azimuth ... 

between points ``a`` and ``b``, coordinates of 

which are expected to be given in geographical coordinates and in degrees. 

 

.. math:: 

 

A_{\\mathrm{lat'}} = \\frac{ \\pi}{180} \\cdot A_{lat}, \\quad 

A_{\\mathrm{lon'}} = \\frac{ \\pi}{180} \\cdot A_{lon}, \\quad 

B_{\\mathrm{lat'}} = \\frac{ \\pi}{180} \\cdot B_{lat}, \\quad 

B_{\\mathrm{lon'}} = \\frac{ \\pi}{180} \\cdot B_{lon}\\\\ 

 

\\varphi_{\\mathrm{azi},AB} = \\frac{180}{\\pi} \\arctan \\left[ 

\\frac{ 

\\cos( A_{\\mathrm{lat'}}) \\cos( B_{\\mathrm{lat'}} ) 

\\sin(B_{\\mathrm{lon'}} - A_{\\mathrm{lon'}} )} 

{\\sin ( B_{\\mathrm{lat'}} ) - \\sin( A_{\\mathrm{lat'}} 

cosdelta) } \\right] 

 

:param a: Location point A 

:type a: :py:class:`pyrocko.orthodrome.Loc` 

:param b: Location point B 

:type b: :py:class:`pyrocko.orthodrome.Loc` 

 

:return: Azimuth in degree 

''' 

 

alat, alon, blat, blon = _latlon_pair(args) 

 

return r2d*math.atan2( 

math.cos(alat*d2r) * math.cos(blat*d2r) * 

math.sin(d2r*(blon-alon)), 

math.sin(d2r*blat) - math.sin(d2r*alat) * cosdelta( 

alat, alon, blat, blon)) 

 

 

def azimuth_numpy(a_lats, a_lons, b_lats, b_lons, _cosdelta=None): 

'''Calculation of the azimuth (*track angle*) from a location A towards B. 

 

This function returns azimuths (*track angles*) from locations A towards B 

given in :py:class:`numpy.ndarray`. Coordinates are expected to be given in 

geographical coordinates and in degrees. 

 

Please find the details of the implementation in the documentation of the 

function :py:func:`pyrocko.orthodrome.azimuth`. 

 

 

:param a_lats: Latitudes (degree) point A 

:param a_lons: Longitudes (degree) point A 

:param b_lats: Latitudes (degree) point B 

:param b_lons: Longitudes (degree) point B 

:type a_lats: :py:class:`numpy.ndarray`, ``(N)`` 

:type a_lons: :py:class:`numpy.ndarray`, ``(N)`` 

:type b_lats: :py:class:`numpy.ndarray`, ``(N)`` 

:type b_lons: :py:class:`numpy.ndarray`, ``(N)`` 

 

:return: Azimuths in degrees 

:rtype: :py:class:`numpy.ndarray`, ``(N)`` 

''' 

if _cosdelta is None: 

_cosdelta = cosdelta_numpy(a_lats, a_lons, b_lats, b_lons) 

 

return r2d*num.arctan2( 

num.cos(a_lats*d2r) * num.cos(b_lats*d2r) * 

num.sin(d2r*(b_lons-a_lons)), 

num.sin(d2r*b_lats) - num.sin(d2r*a_lats) * _cosdelta) 

 

 

def azibazi(*args, **kwargs): 

alat, alon, blat, blon = _latlon_pair(args) 

if alat == blat and alon == blon: 

return 0., 180. 

 

implementation = kwargs.get('implementation', 'c') 

assert implementation in ('c', 'python') 

if implementation == 'c': 

from pyrocko import orthodrome_ext 

return orthodrome_ext.azibazi(alat, alon, blat, blon) 

 

cd = cosdelta(alat, alon, blat, blon) 

azi = r2d*math.atan2( 

math.cos(alat*d2r) * math.cos(blat*d2r) * 

math.sin(d2r*(blon-alon)), 

math.sin(d2r*blat) - math.sin(d2r*alat) * cd) 

bazi = r2d*math.atan2( 

math.cos(blat*d2r) * math.cos(alat*d2r) * 

math.sin(d2r*(alon-blon)), 

math.sin(d2r*alat) - math.sin(d2r*blat) * cd) 

 

return azi, bazi 

 

 

def azibazi_numpy(a_lats, a_lons, b_lats, b_lons, implementation='c'): 

 

a_lats, a_lons, b_lats, b_lons = float_array_broadcast( 

a_lats, a_lons, b_lats, b_lons) 

 

assert implementation in ('c', 'python') 

if implementation == 'c': 

from pyrocko import orthodrome_ext 

return orthodrome_ext.azibazi_numpy(a_lats, a_lons, b_lats, b_lons) 

 

_cosdelta = cosdelta_numpy(a_lats, a_lons, b_lats, b_lons) 

azis = azimuth_numpy(a_lats, a_lons, b_lats, b_lons, _cosdelta) 

bazis = azimuth_numpy(b_lats, b_lons, a_lats, a_lons, _cosdelta) 

 

eq = num.logical_and(a_lats == b_lats, a_lons == b_lons) 

ii_eq = num.where(eq)[0] 

azis[ii_eq] = 0.0 

bazis[ii_eq] = 180.0 

return azis, bazis 

 

 

def azidist_numpy(*args): 

'''Calculation of the azimuth (*track angle*) and the distance from 

locations A towards B on a sphere. 

 

The assisting functions used are :py:func:`pyrocko.orthodrome.cosdelta` and 

:py:func:`pyrocko.orthodrome.azimuth` 

 

:param a_lats: Latitudes (degree) point A 

:param a_lons: Longitudes (degree) point A 

:param b_lats: Latitudes (degree) point B 

:param b_lons: Longitudes (degree) point B 

:type a_lats: :py:class:`numpy.ndarray`, ``(N)`` 

:type a_lons: :py:class:`numpy.ndarray`, ``(N)`` 

:type b_lats: :py:class:`numpy.ndarray`, ``(N)`` 

:type b_lons: :py:class:`numpy.ndarray`, ``(N)`` 

 

:return: Azimuths in degrees, distances in degrees 

:rtype: :py:class:`numpy.ndarray`, ``(2xN)`` 

''' 

_cosdelta = cosdelta_numpy(*args) 

_azimuths = azimuth_numpy(_cosdelta=_cosdelta, *args) 

return _azimuths, r2d*num.arccos(_cosdelta) 

 

 

def distance_accurate50m(*args, **kwargs): 

''' Accurate distance calculation based on a spheroid of rotation. 

 

Function returns distance in meter between points A and B, coordinates of 

which must be given in geographical coordinates and in degrees. 

The returned distance should be accurate to 50 m using WGS84. 

Values for the Earth's equator radius and the Earth's oblateness 

(``f_oblate``) are defined in the pyrocko configuration file 

:py:class:`pyrocko.config`. 

 

From wikipedia (http://de.wikipedia.org/wiki/Orthodrome), based on: 

 

``Meeus, J.: Astronomical Algorithms, S 85, Willmann-Bell, 

Richmond 2000 (2nd ed., 2nd printing), ISBN 0-943396-61-1`` 

 

.. math:: 

 

F = \\frac{\\pi}{180} 

\\frac{(A_{lat} + B_{lat})}{2}, \\quad 

G = \\frac{\\pi}{180} 

\\frac{(A_{lat} - B_{lat})}{2}, \\quad 

l = \\frac{\\pi}{180} 

\\frac{(A_{lon} - B_{lon})}{2} \\quad 

\\\\[0.5cm] 

S = \\sin^2(G) \\cdot \\cos^2(l) + 

\\cos^2(F) \\cdot \\sin^2(l), \\quad \\quad 

C = \\cos^2(G) \\cdot \\cos^2(l) + 

\\sin^2(F) \\cdot \\sin^2(l) 

 

.. math:: 

 

w = \\arctan \\left( \\sqrt{ \\frac{S}{C}} \\right) , \\quad 

r = \\sqrt{\\frac{S}{C} } 

 

The spherical-earth distance D between A and B, can be given with: 

 

.. math:: 

 

D_{sphere} = 2w \\cdot R_{equator} 

 

The oblateness of the Earth requires some correction with 

correction factors h1 and h2: 

 

.. math:: 

 

h_1 = \\frac{3r - 1}{2C}, \\quad 

h_2 = \\frac{3r +1 }{2S}\\\\[0.5cm] 

 

D = D_{\\mathrm{sphere}} \\cdot [ 1 + h_1 \\,f_{\\mathrm{oblate}} 

\\cdot \\sin^2(F) 

\\cos^2(G) - h_2\\, f_{\\mathrm{oblate}} 

\\cdot \\cos^2(F) \\sin^2(G)] 

 

 

:param a: Location point A 

:type a: :py:class:`pyrocko.orthodrome.Loc` 

:param b: Location point B 

:type b: :py:class:`pyrocko.orthodrome.Loc` 

 

:return: Distance in meter 

:rtype: float 

''' 

 

alat, alon, blat, blon = _latlon_pair(args) 

 

implementation = kwargs.get('implementation', 'c') 

assert implementation in ('c', 'python') 

if implementation == 'c': 

from pyrocko import orthodrome_ext 

return orthodrome_ext.distance_accurate50m(alat, alon, blat, blon) 

 

f = (alat + blat)*d2r / 2. 

g = (alat - blat)*d2r / 2. 

h = (alon - blon)*d2r / 2. 

 

s = math.sin(g)**2 * math.cos(h)**2 + math.cos(f)**2 * math.sin(h)**2 

c = math.cos(g)**2 * math.cos(h)**2 + math.sin(f)**2 * math.sin(h)**2 

 

w = math.atan(math.sqrt(s/c)) 

 

if w == 0.0: 

return 0.0 

 

r = math.sqrt(s*c)/w 

d = 2.*w*earthradius_equator 

h1 = (3.*r-1.)/(2.*c) 

h2 = (3.*r+1.)/(2.*s) 

 

return d * (1. + 

earth_oblateness * h1 * math.sin(f)**2 * math.cos(g)**2 - 

earth_oblateness * h2 * math.cos(f)**2 * math.sin(g)**2) 

 

 

def distance_accurate50m_numpy( 

a_lats, a_lons, b_lats, b_lons, implementation='c'): 

 

''' Accurate distance calculation based on a spheroid of rotation. 

 

Function returns distance in meter between points ``a`` and ``b``, 

coordinates of which must be given in geographical coordinates and in 

degrees. 

The returned distance should be accurate to 50 m using WGS84. 

Values for the Earth's equator radius and the Earth's oblateness 

(``f_oblate``) are defined in the pyrocko configuration file 

:py:class:`pyrocko.config`. 

 

From wikipedia (http://de.wikipedia.org/wiki/Orthodrome), based on: 

 

``Meeus, J.: Astronomical Algorithms, S 85, Willmann-Bell, 

Richmond 2000 (2nd ed., 2nd printing), ISBN 0-943396-61-1`` 

 

.. math:: 

 

F_i = \\frac{\\pi}{180} 

\\frac{(a_{lat,i} + a_{lat,i})}{2}, \\quad 

G_i = \\frac{\\pi}{180} 

\\frac{(a_{lat,i} - b_{lat,i})}{2}, \\quad 

l_i= \\frac{\\pi}{180} 

\\frac{(a_{lon,i} - b_{lon,i})}{2} \\\\[0.5cm] 

S_i = \\sin^2(G_i) \\cdot \\cos^2(l_i) + 

\\cos^2(F_i) \\cdot \\sin^2(l_i), \\quad \\quad 

C_i = \\cos^2(G_i) \\cdot \\cos^2(l_i) + 

\\sin^2(F_i) \\cdot \\sin^2(l_i) 

 

.. math:: 

 

w_i = \\arctan \\left( \\sqrt{\\frac{S_i}{C_i}} \\right), \\quad 

r_i = \\sqrt{\\frac{S_i}{C_i} } 

 

The spherical-earth distance ``D`` between ``a`` and ``b``, 

can be given with: 

 

.. math:: 

 

D_{\\mathrm{sphere},i} = 2w_i \\cdot R_{\\mathrm{equator}} 

 

The oblateness of the Earth requires some correction with 

correction factors ``h1`` and ``h2``: 

 

.. math:: 

 

h_{1.i} = \\frac{3r - 1}{2C_i}, \\quad 

h_{2,i} = \\frac{3r +1 }{2S_i}\\\\[0.5cm] 

 

D_{AB,i} = D_{\\mathrm{sphere},i} \\cdot [1 + h_{1,i} 

\\,f_{\\mathrm{oblate}} 

\\cdot \\sin^2(F_i) 

\\cos^2(G_i) - h_{2,i}\\, f_{\\mathrm{oblate}} 

\\cdot \\cos^2(F_i) \\sin^2(G_i)] 

 

:param a_lats: Latitudes (degree) point A 

:param a_lons: Longitudes (degree) point A 

:param b_lats: Latitudes (degree) point B 

:param b_lons: Longitudes (degree) point B 

:type a_lats: :py:class:`numpy.ndarray`, ``(N)`` 

:type a_lons: :py:class:`numpy.ndarray`, ``(N)`` 

:type b_lats: :py:class:`numpy.ndarray`, ``(N)`` 

:type b_lons: :py:class:`numpy.ndarray`, ``(N)`` 

 

:return: Distances in meter 

:rtype: :py:class:`numpy.ndarray`, ``(N)`` 

''' 

 

a_lats, a_lons, b_lats, b_lons = float_array_broadcast( 

a_lats, a_lons, b_lats, b_lons) 

 

assert implementation in ('c', 'python') 

if implementation == 'c': 

from pyrocko import orthodrome_ext 

return orthodrome_ext.distance_accurate50m_numpy( 

a_lats, a_lons, b_lats, b_lons) 

 

eq = num.logical_and(a_lats == b_lats, a_lons == b_lons) 

ii_neq = num.where(num.logical_not(eq))[0] 

 

if num.all(eq): 

return num.zeros_like(eq, dtype=num.float) 

 

def extr(x): 

if isinstance(x, num.ndarray) and x.size > 1: 

return x[ii_neq] 

else: 

return x 

 

a_lats = extr(a_lats) 

a_lons = extr(a_lons) 

b_lats = extr(b_lats) 

b_lons = extr(b_lons) 

 

f = (a_lats + b_lats)*d2r / 2. 

g = (a_lats - b_lats)*d2r / 2. 

h = (a_lons - b_lons)*d2r / 2. 

 

s = num.sin(g)**2 * num.cos(h)**2 + num.cos(f)**2 * num.sin(h)**2 

c = num.cos(g)**2 * num.cos(h)**2 + num.sin(f)**2 * num.sin(h)**2 

 

w = num.arctan(num.sqrt(s/c)) 

 

r = num.sqrt(s*c)/w 

 

d = 2.*w*earthradius_equator 

h1 = (3.*r-1.)/(2.*c) 

h2 = (3.*r+1.)/(2.*s) 

 

dists = num.zeros(eq.size, dtype=num.float) 

dists[ii_neq] = d * ( 

1. + 

earth_oblateness * h1 * num.sin(f)**2 * num.cos(g)**2 - 

earth_oblateness * h2 * num.cos(f)**2 * num.sin(g)**2) 

 

return dists 

 

 

def ne_to_latlon(lat0, lon0, north_m, east_m): 

'''Transform local cartesian coordinates to latitude and longitude. 

 

From east and north coordinates (``x`` and ``y`` coordinate 

:py:class:`numpy.ndarray`) relative to a reference differences in 

longitude and latitude are calculated, which are effectively changes in 

azimuth and distance, respectively: 

 

.. math:: 

 

\\text{distance change:}\\; \\Delta {\\bf{a}} &= \\sqrt{{\\bf{y}}^2 + 

{\\bf{x}}^2 }/ \\mathrm{R_E}, 

 

\\text{azimuth change:}\\; \\Delta \\bf{\\gamma} &= \\arctan( \\bf{x} 

/ \\bf{y}). 

 

The projection used preserves the azimuths of the input points. 

 

:param lat0: Latitude origin of the cartesian coordinate system. 

:param lon0: Longitude origin of the cartesian coordinate system. 

:param north_m: Northing distances from origin in meters. 

:param east_m: Easting distances from origin in meters. 

:type north_m: :py:class:`numpy.ndarray`, ``(N)`` 

:type east_m: :py:class:`numpy.ndarray`, ``(N)`` 

:type lat0: float 

:type lon0: float 

 

:return: Array with latitudes and longitudes 

:rtype: :py:class:`numpy.ndarray`, ``(2xN)`` 

 

''' 

 

a = num.sqrt(north_m**2+east_m**2)/earthradius 

gamma = num.arctan2(east_m, north_m) 

 

return azidist_to_latlon_rad(lat0, lon0, gamma, a) 

 

 

def azidist_to_latlon(lat0, lon0, azimuth_deg, distance_deg): 

'''(Durchreichen??). 

 

''' 

 

return azidist_to_latlon_rad( 

lat0, lon0, azimuth_deg/180.*num.pi, distance_deg/180.*num.pi) 

 

 

def azidist_to_latlon_rad(lat0, lon0, azimuth_rad, distance_rad): 

''' Absolute latitudes and longitudes are calculated from relative changes. 

 

For numerical stability a range between of ``-1.0`` and ``1.0`` is 

enforced for ``c`` and ``alpha``. 

 

.. math:: 

 

\\Delta {\\bf a}_i \\; \\text{and} \\; \\Delta \\gamma_i \\; 

\\text{are relative distances and azimuths from lat0 and lon0 for 

\\textit{i} source points of a finite source.} 

 

.. math:: 

 

\\mathrm{b} &= \\frac{\\pi}{2} -\\frac{\\pi}{180}\\;\\mathrm{lat_0}\\\\ 

{\\bf c}_i &=\\arccos[\\; \\cos(\\Delta {\\bf{a}}_i) 

\\cos(\\mathrm{b}) + |\\Delta \\gamma_i| \\, 

\\sin(\\Delta {\\bf a}_i) 

\\sin(\\mathrm{b})\\; ] \\\\ 

\\mathrm{lat}_i &= \\frac{180}{\\pi} 

\\left(\\frac{\\pi}{2} - {\\bf c}_i \\right) 

 

.. math:: 

 

\\alpha_i &= \\arcsin \\left[ \\; \\frac{ \\sin(\\Delta {\\bf a}_i ) 

\\sin(|\\Delta \\gamma_i|)}{\\sin({\\bf c}_i)}\\; 

\\right] \\\\ 

\\alpha_i &= \\begin{cases} 

\\alpha_i, &\\text{if} \\; \\cos(\\Delta {\\bf a}_i) - 

\\cos(\\mathrm{b}) \\cos({\\bf{c}}_i) > 0, \\; 

\\text{else} \\\\ 

\\pi - \\alpha_i, & \\text{if} \\; \\alpha_i > 0,\\; 

\\text{else}\\\\ 

-\\pi - \\alpha_i, & \\text{if} \\; \\alpha_i < 0. 

\\end{cases} \\\\ 

\\mathrm{lon}_i &= \\mathrm{lon_0} + 

\\frac{180}{\\pi} \\, 

\\frac{\\Delta \\gamma_i }{|\\Delta \\gamma_i|} 

\\cdot \\alpha_i 

\\text{, with $\\alpha_i \\in [-\\pi,\\pi]$} 

 

:param lat0: Latitude origin of the cartesian coordinate system. 

:param lon0: Longitude origin of the cartesian coordinate system. 

:param distance_rad: Distances from origin in radians. 

:param azimuth_rad: Azimuth from radians. 

:type distance_rad: :py:class:`numpy.ndarray`, ``(N)`` 

:type azimuth_rad: :py:class:`numpy.ndarray`, ``(N)`` 

:type lat0: float 

:type lon0: float 

 

:return: Array with latitudes and longitudes 

:rtype: :py:class:`numpy.ndarray`, ``(2xN)`` 

''' 

 

a = distance_rad 

gamma = azimuth_rad 

 

b = math.pi/2.-lat0*d2r 

 

alphasign = 1. 

alphasign = num.where(gamma < 0, -1., 1.) 

gamma = num.abs(gamma) 

 

c = num.arccos(clip( 

num.cos(a)*num.cos(b)+num.sin(a)*num.sin(b)*num.cos(gamma), -1., 1.)) 

 

alpha = num.arcsin(clip( 

num.sin(a)*num.sin(gamma)/num.sin(c), -1., 1.)) 

 

alpha = num.where( 

num.cos(a)-num.cos(b)*num.cos(c) < 0, 

num.where(alpha > 0, math.pi-alpha, -math.pi-alpha), 

alpha) 

 

lat = r2d * (math.pi/2. - c) 

lon = wrap(lon0 + r2d*alpha*alphasign, -180., 180.) 

 

return lat, lon 

 

 

def ne_to_latlon_alternative_method(lat0, lon0, north_m, east_m): 

'''Transform local cartesian coordinates to latitude and longitude. 

 

Like :py:func:`pyrocko.orthodrome.ne_to_latlon`, 

but this method (implementation below), although it should be numerically 

more stable, suffers problems at points which are *across the pole* 

as seen from the cartesian origin. 

 

.. math:: 

 

\\text{distance change:}\\; \\Delta {{\\bf a}_i} &= 

\\sqrt{{\\bf{y}}^2_i + {\\bf{x}}^2_i }/ \\mathrm{R_E},\\\\ 

\\text{azimuth change:}\\; \\Delta {\\bf \\gamma}_i &= 

\\arctan( {\\bf x}_i {\\bf y}_i). \\\\ 

\\mathrm{b} &= 

\\frac{\\pi}{2} -\\frac{\\pi}{180} \\;\\mathrm{lat_0}\\\\ 

 

.. math:: 

 

{{\\bf z}_1}_i &= \\cos{\\left( \\frac{\\Delta {\\bf a}_i - 

\\mathrm{b}}{2} \\right)} 

\\cos {\\left( \\frac{|\\gamma_i|}{2} \\right) }\\\\ 

{{\\bf n}_1}_i &= \\cos{\\left( \\frac{\\Delta {\\bf a}_i + 

\\mathrm{b}}{2} \\right)} 

\\sin {\\left( \\frac{|\\gamma_i|}{2} \\right) }\\\\ 

{{\\bf z}_2}_i &= \\sin{\\left( \\frac{\\Delta {\\bf a}_i - 

\\mathrm{b}}{2} \\right)} 

\\cos {\\left( \\frac{|\\gamma_i|}{2} \\right) }\\\\ 

{{\\bf n}_2}_i &= \\sin{\\left( \\frac{\\Delta {\\bf a}_i + 

\\mathrm{b}}{2} \\right)} 

\\sin {\\left( \\frac{|\\gamma_i|}{2} \\right) }\\\\ 

{{\\bf t}_1}_i &= \\arctan{\\left( \\frac{{{\\bf z}_1}_i} 

{{{\\bf n}_1}_i} \\right) }\\\\ 

{{\\bf t}_2}_i &= \\arctan{\\left( \\frac{{{\\bf z}_2}_i} 

{{{\\bf n}_2}_i} \\right) } \\\\[0.5cm] 

c &= \\begin{cases} 

2 \\cdot \\arccos \\left( {{\\bf z}_1}_i / \\sin({{\\bf t}_1}_i) 

\\right),\\; \\text{if } 

|\\sin({{\\bf t}_1}_i)| > 

|\\sin({{\\bf t}_2}_i)|,\\; \\text{else} \\\\ 

2 \\cdot \\arcsin{\\left( {{\\bf z}_2}_i / 

\\sin({{\\bf t}_2}_i) \\right)}. 

\\end{cases}\\\\ 

 

.. math:: 

 

{\\bf {lat}}_i &= \\frac{180}{ \\pi } \\left( \\frac{\\pi}{2} 

- {\\bf {c}}_i \\right) \\\\ 

{\\bf {lon}}_i &= {\\bf {lon}}_0 + \\frac{180}{ \\pi } 

\\frac{\\gamma_i}{|\\gamma_i|}, 

\\text{ with}\\; \\gamma \\in [-\\pi,\\pi] 

 

:param lat0: Latitude origin of the cartesian coordinate system. 

:param lon0: Longitude origin of the cartesian coordinate system. 

:param north_m: Northing distances from origin in meters. 

:param east_m: Easting distances from origin in meters. 

:type north_m: :py:class:`numpy.ndarray`, ``(N)`` 

:type east_m: :py:class:`numpy.ndarray`, ``(N)`` 

:type lat0: float 

:type lon0: float 

 

:return: Array with latitudes and longitudes 

:rtype: :py:class:`numpy.ndarray`, ``(2xN)`` 

''' 

 

b = math.pi/2.-lat0*d2r 

a = num.sqrt(north_m**2+east_m**2)/earthradius 

 

gamma = num.arctan2(east_m, north_m) 

alphasign = 1. 

alphasign = num.where(gamma < 0., -1., 1.) 

gamma = num.abs(gamma) 

 

z1 = num.cos((a-b)/2.)*num.cos(gamma/2.) 

n1 = num.cos((a+b)/2.)*num.sin(gamma/2.) 

z2 = num.sin((a-b)/2.)*num.cos(gamma/2.) 

n2 = num.sin((a+b)/2.)*num.sin(gamma/2.) 

t1 = num.arctan2(z1, n1) 

t2 = num.arctan2(z2, n2) 

 

alpha = t1 + t2 

 

sin_t1 = num.sin(t1) 

sin_t2 = num.sin(t2) 

c = num.where( 

num.abs(sin_t1) > num.abs(sin_t2), 

num.arccos(z1/sin_t1)*2., 

num.arcsin(z2/sin_t2)*2.) 

 

lat = r2d * (math.pi/2. - c) 

lon = wrap(lon0 + r2d*alpha*alphasign, -180., 180.) 

return lat, lon 

 

 

def latlon_to_ne(*args): 

'''Relative cartesian coordinates with respect to a reference location. 

 

For two locations, a reference location A and another location B, given in 

geographical coordinates in degrees, the corresponding cartesian 

coordinates are calculated. 

Assisting functions are :py:func:`pyrocko.orthodrome.azimuth` and 

:py:func:`pyrocko.orthodrome.distance_accurate50m`. 

 

.. math:: 

 

D_{AB} &= \\mathrm{distance\\_accurate50m(}A, B \\mathrm{)}, \\quad 

\\varphi_{\\mathrm{azi},AB} = \\mathrm{azimuth(}A,B 

\\mathrm{)}\\\\[0.3cm] 

 

n &= D_{AB} \\cdot \\cos( \\frac{\\pi }{180} 

\\varphi_{\\mathrm{azi},AB} )\\\\ 

e &= D_{AB} \\cdot 

\\sin( \\frac{\\pi }{180} \\varphi_{\\mathrm{azi},AB}) 

 

:param refloc: Location reference point 

:type refloc: :py:class:`pyrocko.orthodrome.Loc` 

:param loc: Location of interest 

:type loc: :py:class:`pyrocko.orthodrome.Loc` 

 

:return: Northing and easting from refloc to location 

:rtype: tuple, float 

 

''' 

 

azi = azimuth(*args) 

dist = distance_accurate50m(*args) 

n, e = math.cos(azi*d2r)*dist, math.sin(azi*d2r)*dist 

return n, e 

 

 

def latlon_to_ne_numpy(lat0, lon0, lat, lon): 

'''Relative cartesian coordinates with respect to a reference location. 

 

For two locations, a reference location (``lat0``, ``lon0``) and another 

location B, given in geographical coordinates in degrees, 

the corresponding cartesian coordinates are calculated. 

Assisting functions are :py:func:`azimuth` 

and :py:func:`distance_accurate50m`. 

 

:param lat0: reference location latitude 

:param lon0: reference location longitude 

:param lat: absolute location latitude 

:param lon: absolute location longitude 

 

:return: ``(n, e)``: relative north and east positions 

:rtype: :py:class:`numpy.ndarray`, ``(2xN)`` 

 

Implemented formulations: 

 

.. math:: 

 

D_{AB} &= \\mathrm{distance\\_accurate50m(}A, B \\mathrm{)}, \\quad 

\\varphi_{\\mathrm{azi},AB} = \\mathrm{azimuth(}A,B 

\\mathrm{)}\\\\[0.3cm] 

 

n &= D_{AB} \\cdot \\cos( \\frac{\\pi }{180} \\varphi_{ 

\\mathrm{azi},AB} )\\\\ 

e &= D_{AB} \\cdot \\sin( \\frac{\\pi }{180} \\varphi_{ 

\\mathrm{azi},AB} ) 

''' 

 

azi = azimuth_numpy(lat0, lon0, lat, lon) 

dist = distance_accurate50m_numpy(lat0, lon0, lat, lon) 

n = num.cos(azi*d2r)*dist 

e = num.sin(azi*d2r)*dist 

return n, e 

 

 

_wgs84 = None 

 

 

def get_wgs84(): 

global _wgs84 

if _wgs84 is None: 

from geographiclib.geodesic import Geodesic 

_wgs84 = Geodesic.WGS84 

 

return _wgs84 

 

 

def amap(n): 

def wrap(f): 

if n == 1: 

def func(*args): 

it = num.nditer(args + (None,)) 

for ops in it: 

ops[-1][...] = f(*ops[:-1]) 

 

return it.operands[-1] 

elif n == 2: 

def func(*args): 

it = num.nditer(args + (None, None)) 

for ops in it: 

ops[-2][...], ops[-1][...] = f(*ops[:-2]) 

 

return it.operands[-2], it.operands[-1] 

 

return func 

return wrap 

 

 

@amap(2) 

def ne_to_latlon2(lat0, lon0, north_m, east_m): 

wgs84 = get_wgs84() 

az = num.arctan2(east_m, north_m)*r2d 

dist = num.sqrt(east_m**2 + north_m**2) 

x = wgs84.Direct(lat0, lon0, az, dist) 

return x['lat2'], x['lon2'] 

 

 

@amap(2) 

def latlon_to_ne2(lat0, lon0, lat1, lon1): 

wgs84 = get_wgs84() 

x = wgs84.Inverse(lat0, lon0, lat1, lon1) 

dist = x['s12'] 

az = x['azi1'] 

n = num.cos(az*d2r)*dist 

e = num.sin(az*d2r)*dist 

return n, e 

 

 

@amap(1) 

def distance_accurate15nm(lat1, lon1, lat2, lon2): 

wgs84 = get_wgs84() 

return wgs84.Inverse(lat1, lon1, lat2, lon2)['s12'] 

 

 

def positive_region(region): 

'''Normalize parameterization of a rectangular geographical region. 

 

:param region: ``(west, east, south, north)`` 

:returns: ``(west, east, south, north)``, where ``west <= east`` and 

where ``west`` and ``east`` are in the range ``[-180., 180.+360.[`` 

''' 

west, east, south, north = [float(x) for x in region] 

 

assert -180. - 360. <= west < 180. 

assert -180. < east <= 180. + 360. 

assert -90. <= south < 90. 

assert -90. < north <= 90. 

 

if east < west: 

east += 360. 

 

if west < -180.: 

west += 360. 

east += 360. 

 

return (west, east, south, north) 

 

 

def points_in_region(p, region): 

''' 

Check what points are contained in a rectangular geographical region. 

 

:param p: NumPy array of shape ``(N, 2)`` where each row is a 

``(lat, lon)`` pair [deg] 

:param region: ``(west, east, south, north)`` [deg] 

:returns: NumPy array of shape ``(N)``, type ``bool`` 

''' 

 

w, e, s, n = positive_region(region) 

return num.logical_and( 

num.logical_and(s <= p[:, 0], p[:, 0] <= n), 

num.logical_or( 

num.logical_and(w <= p[:, 1], p[:, 1] <= e), 

num.logical_and(w-360. <= p[:, 1], p[:, 1] <= e-360.))) 

 

 

def point_in_region(p, region): 

''' 

Check if a point is contained in a rectangular geographical region. 

 

:param p: ``(lat, lon)`` [deg] 

:param region: ``(west, east, south, north)`` [deg] 

:returns: ``bool`` 

''' 

 

w, e, s, n = positive_region(region) 

return num.logical_and( 

num.logical_and(s <= p[0], p[0] <= n), 

num.logical_or( 

num.logical_and(w <= p[1], p[1] <= e), 

num.logical_and(w-360. <= p[1], p[1] <= e-360.))) 

 

 

def radius_to_region(lat, lon, radius): 

''' 

Get a rectangular region which fully contains a given circular region. 

 

:param lat,lon: center of circular region [deg] 

:param radius: radius of circular region [m] 

:return: rectangular region as ``(east, west, south, north)`` [deg] 

''' 

radius_deg = radius * m2d 

if radius_deg < 45.: 

lat_min = max(-90., lat - radius_deg) 

lat_max = min(90., lat + radius_deg) 

absmaxlat = max(abs(lat_min), abs(lat_max)) 

if absmaxlat > 89: 

lon_min = -180. 

lon_max = 180. 

else: 

lon_min = max( 

-180. - 360., 

lon - radius_deg / math.cos(absmaxlat*d2r)) 

lon_max = min( 

180. + 360., 

lon + radius_deg / math.cos(absmaxlat*d2r)) 

 

lon_min, lon_max, lat_min, lat_max = positive_region( 

(lon_min, lon_max, lat_min, lat_max)) 

 

return lon_min, lon_max, lat_min, lat_max 

 

else: 

return None 

 

 

def geographic_midpoint(lats, lons, weights=None): 

'''Calculate geographic midpoints by finding the center of gravity. 

 

This method suffers from instabilities if points are centered around the 

poles. 

 

:param lats: array of latitudes 

:param lons: array of longitudes 

:param weights: array weighting factors (optional) 

:type lats: :py:class:`numpy.ndarray`, ``(N)`` 

:type lons: :py:class:`numpy.ndarray`, ``(N)`` 

:type weights: :py:class:`numpy.ndarray`, ``(N)`` 

 

:return: Latitudes and longitudes of the modpoints 

:rtype: :py:class:`numpy.ndarray`, ``(2xN)`` 

''' 

if not weights: 

weights = num.ones(len(lats)) 

 

total_weigth = num.sum(weights) 

weights /= total_weigth 

lats = lats * d2r 

lons = lons * d2r 

x = num.sum(num.cos(lats) * num.cos(lons) * weights) 

y = num.sum(num.cos(lats) * num.sin(lons) * weights) 

z = num.sum(num.sin(lats) * weights) 

 

lon = num.arctan2(y, x) 

hyp = num.sqrt(x**2 + y**2) 

lat = num.arctan2(z, hyp) 

 

return lat/d2r, lon/d2r 

 

 

def geographic_midpoint_locations(locations, weights=None): 

coords = num.array([loc.effective_latlon 

for loc in locations]) 

return geographic_midpoint(coords[:, 0], coords[:, 1], weights) 

 

 

def geodetic_to_ecef(lat, lon, alt): 

''' 

Convert geodetic coordinates to Earth-Centered, Earth-Fixed (ECEF) 

Cartesian coordinates. [#1]_ [#2]_ 

 

:param lat: Geodetic latitude in [deg]. 

:param lon: Geodetic longitude in [deg]. 

:param alt: Geodetic altitude (height) in [m] (positive for points outside 

the geoid). 

:type lat: float 

:type lon: float 

:type alt: float 

 

:return: ECEF Cartesian coordinates (X, Y, Z) in [m]. 

:rtype: tuple, float 

 

.. [#1] https://en.wikipedia.org/wiki/ECEF 

.. [#2] https://en.wikipedia.org/wiki/Geographic_coordinate_conversion 

#From_geodetic_to_ECEF_coordinates 

''' 

 

f = earth_oblateness 

a = earthradius_equator 

e2 = 2*f - f**2 

 

lat, lon = num.radians(lat), num.radians(lon) 

# Normal (plumb line) 

N = a / num.sqrt(1.0 - (e2 * num.sin(lat)**2)) 

 

X = (N+alt) * num.cos(lat) * num.cos(lon) 

Y = (N+alt) * num.cos(lat) * num.sin(lon) 

Z = (N*(1.0-e2) + alt) * num.sin(lat) 

 

return (X, Y, Z) 

 

 

def ecef_to_geodetic(X, Y, Z): 

''' 

Convert Earth-Centered, Earth-Fixed (ECEF) Cartesian coordinates to 

geodetic coordinates (Ferrari's solution). 

 

:param X, Y, Z: Cartesian coordinates in ECEF system in [m]. 

:type X, Y, Z: float 

 

:return: Geodetic coordinates (lat, lon, alt). Latitude and longitude are 

in [deg] and altitude is in [m] 

(positive for points outside the geoid). 

:rtype: tuple, float 

 

.. seealso :: 

https://en.wikipedia.org/wiki/Geographic_coordinate_conversion 

#The_application_of_Ferrari.27s_solution 

''' 

f = earth_oblateness 

a = earthradius_equator 

b = a * (1. - f) 

e2 = 2.*f - f**2 

 

# usefull 

a2 = a**2 

b2 = b**2 

e4 = e2**2 

X2 = X**2 

Y2 = Y**2 

Z2 = Z**2 

 

r = num.sqrt(X2 + Y2) 

r2 = r**2 

 

e_prime2 = (a2 - b2)/b2 

E2 = a2 - b2 

F = 54. * b2 * Z2 

G = r2 + (1.-e2)*Z2 - (e2*E2) 

C = (e4 * F * r2) / (G**3) 

S = cbrt(1. + C + num.sqrt(C**2 + 2.*C)) 

P = F / (3. * (S + 1./S + 1.)**2 * G**2) 

Q = num.sqrt(1. + (2.*e4*P)) 

 

dum1 = -(P*e2*r) / (1.+Q) 

dum2 = 0.5 * a2 * (1. + 1./Q) 

dum3 = (P * (1.-e2) * Z2) / (Q * (1.+Q)) 

dum4 = 0.5 * P * r2 

r0 = dum1 + num.sqrt(dum2 - dum3 - dum4) 

 

U = num.sqrt((r - e2*r0)**2 + Z2) 

V = num.sqrt((r - e2*r0)**2 + (1.-e2)*Z2) 

Z0 = (b2*Z) / (a*V) 

 

alt = U * (1. - (b2 / (a*V))) 

lat = num.arctan((Z + e_prime2 * Z0)/r) 

lon = num.arctan2(Y, X) 

 

return (lat*r2d, lon*r2d, alt) 

 

 

class Farside(Exception): 

pass 

 

 

def latlon_to_xyz(latlons): 

if latlons.ndim == 1: 

return latlon_to_xyz(latlons[num.newaxis, :])[0] 

 

points = num.zeros((latlons.shape[0], 3)) 

lats = latlons[:, 0] 

lons = latlons[:, 1] 

points[:, 0] = num.cos(lats*d2r) * num.cos(lons*d2r) 

points[:, 1] = num.cos(lats*d2r) * num.sin(lons*d2r) 

points[:, 2] = num.sin(lats*d2r) 

return points 

 

 

def xyz_to_latlon(xyz): 

if xyz.ndim == 1: 

return xyz_to_latlon(xyz[num.newaxis, :])[0] 

 

latlons = num.zeros((xyz.shape[0], 2)) 

latlons[:, 0] = num.arctan2( 

xyz[:, 2], num.sqrt(xyz[:, 0]**2 + xyz[:, 1]**2)) * r2d 

latlons[:, 1] = num.arctan2( 

xyz[:, 1], xyz[:, 0]) * r2d 

return latlons 

 

 

def rot_to_00(lat, lon): 

rot0 = euler_to_matrix(0., -90.*d2r, 0.).A 

rot1 = euler_to_matrix(-d2r*lat, 0., -d2r*lon).A 

return num.dot(rot0.T, num.dot(rot1, rot0)).T 

 

 

def distances3d(a, b): 

return num.sqrt(num.sum((a-b)**2, axis=a.ndim-1)) 

 

 

def circulation(points2): 

return num.sum( 

(points2[1:, 0] - points2[:-1, 0]) 

* (points2[1:, 1] + points2[:-1, 1])) 

 

 

def stereographic(points): 

dists = distances3d(points[1:, :], points[:-1, :]) 

if dists.size > 0: 

maxdist = num.max(dists) 

cutoff = maxdist**2 / 2. 

else: 

cutoff = 1.0e-5 

 

points = points.copy() 

if num.any(points[:, 0] < -1. + cutoff): 

raise Farside() 

 

points_out = points[:, 1:].copy() 

factor = 1.0 / (1.0 + points[:, 0]) 

points_out *= factor[:, num.newaxis] 

 

return points_out 

 

 

def stereographic_poly(points): 

dists = distances3d(points[1:, :], points[:-1, :]) 

if dists.size > 0: 

maxdist = num.max(dists) 

cutoff = maxdist**2 / 2. 

else: 

cutoff = 1.0e-5 

 

points = points.copy() 

if num.any(points[:, 0] < -1. + cutoff): 

raise Farside() 

 

points_out = points[:, 1:].copy() 

factor = 1.0 / (1.0 + points[:, 0]) 

points_out *= factor[:, num.newaxis] 

 

if circulation(points_out) >= 0: 

raise Farside() 

 

return points_out 

 

 

def gnomonic_x(points, cutoff=0.01): 

points_out = points[:, 1:].copy() 

if num.any(points[:, 0] < cutoff): 

raise Farside() 

 

factor = 1.0 / points[:, 0] 

points_out *= factor[:, num.newaxis] 

return points_out 

 

 

def cneg(i, x): 

if i == 1: 

return x 

else: 

return num.logical_not(x) 

 

 

def contains_points(polygon, points): 

''' 

Test which points are inside polygon on a sphere. 

 

:param polygon: Point coordinates defining the polygon [deg]. 

:type polygon: :py:class:`numpy.ndarray` of shape (N, 2), second index 

0=lat, 1=lon 

:param points: Coordinates of points to test [deg]. 

:type points: :py:class:`numpy.ndarray` of shape (N, 2), second index 

0=lat, 1=lon 

 

:returns: Boolean mask array. 

:rtype: :py:class:`numpy.ndarray` of shape (N,) 

 

The inside of the polygon is defined as the area which is to the left hand 

side of an observer walking the polygon line, points in order, on the 

sphere. Lines between the polygon points are treated as great circle paths. 

The polygon may be arbitrarily complex, as long as it does not have any 

crossings or thin parts with zero width. The polygon may contain the poles 

and is allowed to wrap around the sphere multiple times. 

 

The algorithm works by consecutive cutting of the polygon into (almost) 

hemispheres and subsequent Gnomonic projections to perform the 

point-in-polygon tests on a 2D plane. 

''' 

 

and_ = num.logical_and 

 

points_xyz = latlon_to_xyz(points) 

mask_x = 0. <= points_xyz[:, 0] 

mask_y = 0. <= points_xyz[:, 1] 

mask_z = 0. <= points_xyz[:, 2] 

 

result = num.zeros(points.shape[0], dtype=num.int) 

 

for ix in [-1, 1]: 

for iy in [-1, 1]: 

for iz in [-1, 1]: 

mask = and_( 

and_(cneg(ix, mask_x), cneg(iy, mask_y)), 

cneg(iz, mask_z)) 

 

center_xyz = num.array([ix, iy, iz], dtype=num.float) 

 

lat, lon = xyz_to_latlon(center_xyz) 

rot = rot_to_00(lat, lon) 

 

points_rot_xyz = num.dot(rot, points_xyz[mask, :].T).T 

points_rot_pro = gnomonic_x(points_rot_xyz) 

 

offset = 0.01 

 

poly_xyz = latlon_to_xyz(polygon) 

poly_rot_xyz = num.dot(rot, poly_xyz.T).T 

poly_rot_xyz[:, 0] -= offset 

groups = spoly_cut([poly_rot_xyz], axis=0) 

 

for poly_rot_group_xyz in groups[1]: 

poly_rot_group_xyz[:, 0] += offset 

 

poly_rot_group_pro = gnomonic_x( 

poly_rot_group_xyz) 

 

if circulation(poly_rot_group_pro) > 0: 

result[mask] += path_contains_points( 

poly_rot_group_pro, points_rot_pro) 

else: 

result[mask] -= path_contains_points( 

poly_rot_group_pro, points_rot_pro) 

 

return result.astype(num.bool) 

 

 

def contains_point(polygon, point): 

''' 

Test if point is inside polygon on a sphere. 

 

:param polygon: Point coordinates defining the polygon [deg]. 

:type polygon: :py:class:`numpy.ndarray` of shape (N, 2), second index 

0=lat, 1=lon 

:param point: Coordinates ``(lat, lon)`` of point to test [deg]. 

 

Convenience wrapper to :py:func:`contains_points` to test a single point. 

''' 

 

return bool( 

contains_points(polygon, num.asarray(point)[num.newaxis, :])[0])