1# http://pyrocko.org - GPLv3 

2# 

3# The Pyrocko Developers, 21st Century 

4# ---|P------/S----------~Lg---------- 

5 

6from math import pi as PI 

7import logging 

8import numpy as num 

9 

10from matplotlib.collections import PatchCollection 

11from matplotlib.patches import Polygon 

12from matplotlib.transforms import Transform 

13from matplotlib.colors import LinearSegmentedColormap 

14 

15from pyrocko import moment_tensor as mtm 

16from pyrocko.util import num_full 

17 

18logger = logging.getLogger('pyrocko.plot.beachball') 

19 

20NA = num.newaxis 

21d2r = num.pi / 180. 

22 

23 

24def view_rotation(strike, dip): 

25 return mtm.euler_to_matrix( 

26 dip*d2r, strike*d2r, -90.*d2r) 

27 

28 

29_view_south = view_rotation(90., 90.) 

30_view_north = view_rotation(-90., 90.) 

31_view_east = view_rotation(0., 90.) 

32_view_west = view_rotation(180., 90.) 

33 

34 

35class BeachballError(Exception): 

36 pass 

37 

38 

39class _FixedPointOffsetTransform(Transform): 

40 def __init__(self, trans, dpi_scale_trans, fixed_point): 

41 Transform.__init__(self) 

42 self.input_dims = self.output_dims = 2 

43 self.has_inverse = False 

44 self.trans = trans 

45 self.dpi_scale_trans = dpi_scale_trans 

46 self.fixed_point = num.asarray(fixed_point, dtype=num.float64) 

47 

48 def transform_non_affine(self, values): 

49 fp = self.trans.transform(self.fixed_point) 

50 return fp + self.dpi_scale_trans.transform(values) 

51 

52 

53def vnorm(points): 

54 return num.sqrt(num.sum(points**2, axis=1)) 

55 

56 

57def clean_poly(points): 

58 if not num.all(points[0, :] == points[-1, :]): 

59 points = num.vstack((points, points[0:1, :])) 

60 

61 dupl = num.concatenate( 

62 (num.all(points[1:, :] == points[:-1, :], axis=1), [False])) 

63 points = points[num.logical_not(dupl)] 

64 return points 

65 

66 

67def close_poly(points): 

68 if not num.all(points[0, :] == points[-1, :]): 

69 points = num.vstack((points, points[0:1, :])) 

70 

71 return points 

72 

73 

74def circulation(points, axis): 

75 # assert num.all(points[:, axis] >= 0.0) or num.all(points[:, axis] <= 0.0) 

76 

77 points2 = points[:, ((axis+2) % 3, (axis+1) % 3)].copy() 

78 points2 *= 1.0 / num.sqrt(1.0 + num.abs(points[:, axis]))[:, num.newaxis] 

79 

80 result = -num.sum( 

81 (points2[1:, 0] - points2[:-1, 0]) * 

82 (points2[1:, 1] + points2[:-1, 1])) 

83 

84 result -= (points2[0, 0] - points2[-1, 0]) \ 

85 * (points2[0, 1] + points2[-1, 1]) 

86 return result 

87 

88 

89def spoly_cut(l_points, axis=0, nonsimple=True, arcres=181): 

90 dphi = 2.*PI / (2*arcres) 

91 

92 # cut sub-polygons and gather crossing point information 

93 crossings = [] 

94 snippets = {} 

95 for ipath, points in enumerate(l_points): 

96 if not num.all(points[0, :] == points[-1, :]): 

97 points = num.vstack((points, points[0:1, :])) 

98 

99 # get upward crossing points 

100 iup = num.where(num.logical_and(points[:-1, axis] <= 0., 

101 points[1:, axis] > 0.))[0] 

102 aup = - points[iup, axis] / (points[iup+1, axis] - points[iup, axis]) 

103 pup = points[iup, :] + aup[:, num.newaxis] * (points[iup+1, :] - 

104 points[iup, :]) 

105 phiup = num.arctan2(pup[:, (axis+2) % 3], pup[:, (axis+1) % 3]) 

106 

107 for i in range(len(iup)): 

108 crossings.append((phiup[i], ipath, iup[i], 1, pup[i], [1, -1])) 

109 

110 # get downward crossing points 

111 idown = num.where(num.logical_and(points[:-1, axis] > 0., 

112 points[1:, axis] <= 0.))[0] 

113 adown = - points[idown+1, axis] / (points[idown, axis] - 

114 points[idown+1, axis]) 

115 pdown = points[idown+1, :] + adown[:, num.newaxis] * ( 

116 points[idown, :] - points[idown+1, :]) 

117 phidown = num.arctan2(pdown[:, (axis+2) % 3], pdown[:, (axis+1) % 3]) 

118 

119 for i in range(idown.size): 

120 crossings.append( 

121 (phidown[i], ipath, idown[i], -1, pdown[i], [1, -1])) 

122 

123 icuts = num.sort(num.concatenate((iup, idown))) 

124 

125 for i in range(icuts.size-1): 

126 snippets[ipath, icuts[i]] = ( 

127 ipath, icuts[i+1], points[icuts[i]+1:icuts[i+1]+1]) 

128 

129 if icuts.size: 

130 points_last = num.concatenate(( 

131 points[icuts[-1]+1:], 

132 points[:icuts[0]+1])) 

133 

134 snippets[ipath, icuts[-1]] = (ipath, icuts[0], points_last) 

135 else: 

136 snippets[ipath, 0] = (ipath, 0, points) 

137 

138 crossings.sort() 

139 

140 # assemble new sub-polygons 

141 current = snippets.pop(list(snippets.keys())[0]) 

142 outs = [[]] 

143 while True: 

144 outs[-1].append(current[2]) 

145 for i, c1 in enumerate(crossings): 

146 if c1[1:3] == current[:2]: 

147 direction = -1 * c1[3] 

148 break 

149 else: 

150 if not snippets: 

151 break 

152 current = snippets.pop(list(snippets.keys())[0]) 

153 outs.append([]) 

154 continue 

155 

156 while True: 

157 i = (i + direction) % len(crossings) 

158 if crossings[i][3] == direction and direction in crossings[i][-1]: 

159 break 

160 

161 c2 = crossings[i] 

162 c2[-1].remove(direction) 

163 

164 phi1 = c1[0] 

165 phi2 = c2[0] 

166 if direction == 1: 

167 if phi1 > phi2: 

168 phi2 += PI * 2. 

169 

170 if direction == -1: 

171 if phi1 < phi2: 

172 phi2 -= PI * 2. 

173 

174 n = int(abs(phi2 - phi1) / dphi) + 2 

175 

176 phis = num.linspace(phi1, phi2, n) 

177 cpoints = num.zeros((n, 3)) 

178 cpoints[:, (axis+1) % 3] = num.cos(phis) 

179 cpoints[:, (axis+2) % 3] = num.sin(phis) 

180 cpoints[:, axis] = 0.0 

181 

182 outs[-1].append(cpoints) 

183 

184 try: 

185 current = snippets[c2[1:3]] 

186 del snippets[c2[1:3]] 

187 

188 except KeyError: 

189 if not snippets: 

190 break 

191 

192 current = snippets.pop(list(snippets.keys())[0]) 

193 outs.append([]) 

194 

195 # separate hemispheres, force polygons closed, remove duplicate points 

196 # remove polygons with less than 3 points (4, when counting repeated 

197 # endpoint) 

198 

199 outs_upper = [] 

200 outs_lower = [] 

201 for out in outs: 

202 if out: 

203 out = clean_poly(num.vstack(out)) 

204 if out.shape[0] >= 4: 

205 if num.sum(out[:, axis]) > 0.0: 

206 outs_upper.append(out) 

207 else: 

208 outs_lower.append(out) 

209 

210 if nonsimple and ( 

211 len(crossings) == 0 or 

212 len(outs_upper) == 0 or 

213 len(outs_lower) == 0): 

214 

215 # check if we are cutting between holes 

216 need_divider = False 

217 if outs_upper: 

218 candis = sorted( 

219 outs_upper, key=lambda out: num.min(out[:, axis])) 

220 

221 if circulation(candis[0], axis) > 0.0: 

222 need_divider = True 

223 

224 if outs_lower: 

225 candis = sorted( 

226 outs_lower, key=lambda out: num.max(out[:, axis])) 

227 

228 if circulation(candis[0], axis) < 0.0: 

229 need_divider = True 

230 

231 if need_divider: 

232 phi1 = 0. 

233 phi2 = PI*2. 

234 n = int(abs(phi2 - phi1) / dphi) + 2 

235 

236 phis = num.linspace(phi1, phi2, n) 

237 cpoints = num.zeros((n, 3)) 

238 cpoints[:, (axis+1) % 3] = num.cos(phis) 

239 cpoints[:, (axis+2) % 3] = num.sin(phis) 

240 cpoints[:, axis] = 0.0 

241 

242 outs_upper.append(cpoints) 

243 outs_lower.append(cpoints[::-1, :]) 

244 

245 return outs_lower, outs_upper 

246 

247 

248def numpy_rtp2xyz(rtp): 

249 r = rtp[:, 0] 

250 theta = rtp[:, 1] 

251 phi = rtp[:, 2] 

252 vecs = num.empty(rtp.shape, dtype=num.float64) 

253 vecs[:, 0] = r*num.sin(theta)*num.cos(phi) 

254 vecs[:, 1] = r*num.sin(theta)*num.sin(phi) 

255 vecs[:, 2] = r*num.cos(theta) 

256 return vecs 

257 

258 

259def numpy_xyz2rtp(xyz): 

260 x, y, z = xyz[:, 0], xyz[:, 1], xyz[:, 2] 

261 vecs = num.empty(xyz.shape, dtype=num.float64) 

262 vecs[:, 0] = num.sqrt(x**2+y**2+z**2) 

263 vecs[:, 1] = num.arctan2(num.sqrt(x**2+y**2), z) 

264 vecs[:, 2] = num.arctan2(y, x) 

265 return vecs 

266 

267 

268def circle_points(aphi, sign=1.0): 

269 vecs = num.empty((aphi.size, 3), dtype=num.float64) 

270 vecs[:, 0] = num.cos(sign*aphi) 

271 vecs[:, 1] = num.sin(sign*aphi) 

272 vecs[:, 2] = 0.0 

273 return vecs 

274 

275 

276def eig2gx(eig, arcres=181): 

277 aphi = num.linspace(0., 2.*PI, arcres) 

278 ep, en, et, vp, vn, vt = eig 

279 

280 mt_sign = num.sign(ep + en + et) 

281 

282 groups = [] 

283 for (pt_name, pt_sign) in [('P', -1.), ('T', 1.)]: 

284 patches = [] 

285 patches_lower = [] 

286 patches_upper = [] 

287 lines = [] 

288 lines_lower = [] 

289 lines_upper = [] 

290 for iperm, (va, vb, vc, ea, eb, ec) in enumerate([ 

291 (vp, vn, vt, ep, en, et), 

292 (vt, vp, vn, et, ep, en)]): # (vn, vt, vp, en, et, ep)]): 

293 

294 perm_sign = [-1.0, 1.0][iperm] 

295 to_e = num.vstack((vb, vc, va)) 

296 from_e = to_e.T 

297 

298 poly_es = [] 

299 polys = [] 

300 for sign in (-1., 1.): 

301 xphi = perm_sign*pt_sign*sign*aphi 

302 denom = eb*num.cos(xphi)**2 + ec*num.sin(xphi)**2 

303 if num.any(denom == 0.): 

304 continue 

305 

306 Y = -ea/denom 

307 if num.any(Y < 0.): 

308 continue 

309 

310 xtheta = num.arctan(num.sqrt(Y)) 

311 rtp = num.empty(xphi.shape+(3,), dtype=num.float64) 

312 rtp[:, 0] = 1. 

313 if sign > 0: 

314 rtp[:, 1] = xtheta 

315 else: 

316 rtp[:, 1] = PI - xtheta 

317 

318 rtp[:, 2] = xphi 

319 poly_e = numpy_rtp2xyz(rtp) 

320 poly = num.dot(from_e, poly_e.T).T 

321 poly[:, 2] -= 0.001 

322 

323 poly_es.append(poly_e) 

324 polys.append(poly) 

325 

326 if polys: 

327 polys_lower, polys_upper = spoly_cut(polys, 2, arcres=arcres) 

328 lines.extend(polys) 

329 lines_lower.extend(polys_lower) 

330 lines_upper.extend(polys_upper) 

331 

332 if poly_es: 

333 for aa in spoly_cut(poly_es, 0, arcres=arcres): 

334 for bb in spoly_cut(aa, 1, arcres=arcres): 

335 for cc in spoly_cut(bb, 2, arcres=arcres): 

336 for poly_e in cc: 

337 poly = num.dot(from_e, poly_e.T).T 

338 poly[:, 2] -= 0.001 

339 polys_lower, polys_upper = spoly_cut( 

340 [poly], 2, nonsimple=False, arcres=arcres) 

341 

342 patches.append(poly) 

343 patches_lower.extend(polys_lower) 

344 patches_upper.extend(polys_upper) 

345 

346 if not patches: 

347 if mt_sign * pt_sign == 1.: 

348 patches_lower.append(circle_points(aphi, -1.0)) 

349 patches_upper.append(circle_points(aphi, 1.0)) 

350 lines_lower.append(circle_points(aphi, -1.0)) 

351 lines_upper.append(circle_points(aphi, 1.0)) 

352 

353 groups.append(( 

354 pt_name, 

355 patches, patches_lower, patches_upper, 

356 lines, lines_lower, lines_upper)) 

357 

358 return groups 

359 

360 

361def extr(points): 

362 pmean = num.mean(points, axis=0) 

363 return points + pmean*0.05 

364 

365 

366def draw_eigenvectors_mpl(eig, axes): 

367 vp, vn, vt = eig[3:] 

368 for lab, v in [('P', vp), ('N', vn), ('T', vt)]: 

369 sign = num.sign(v[2]) + (v[2] == 0.0) 

370 axes.plot(sign*v[1], sign*v[0], 'o', color='black') 

371 axes.text(sign*v[1], sign*v[0], ' '+lab) 

372 

373 

374def project(points, projection='lambert'): 

375 points_out = points[:, :2].copy() 

376 if projection == 'lambert': 

377 factor = 1.0 / num.sqrt(1.0 + points[:, 2]) 

378 elif projection == 'stereographic': 

379 factor = 1.0 / (1.0 + points[:, 2]) 

380 elif projection == 'orthographic': 

381 factor = None 

382 else: 

383 raise BeachballError( 

384 'invalid argument for projection: %s' % projection) 

385 

386 if factor is not None: 

387 points_out *= factor[:, num.newaxis] 

388 

389 return points_out 

390 

391 

392def inverse_project(points, projection='lambert'): 

393 points_out = num.zeros((points.shape[0], 3)) 

394 

395 rsqr = points[:, 0]**2 + points[:, 1]**2 

396 if projection == 'lambert': 

397 points_out[:, 2] = 1.0 - rsqr 

398 points_out[:, 1] = num.sqrt(2.0 - rsqr) * points[:, 1] 

399 points_out[:, 0] = num.sqrt(2.0 - rsqr) * points[:, 0] 

400 elif projection == 'stereographic': 

401 points_out[:, 2] = - (rsqr - 1.0) / (rsqr + 1.0) 

402 points_out[:, 1] = 2.0 * points[:, 1] / (rsqr + 1.0) 

403 points_out[:, 0] = 2.0 * points[:, 0] / (rsqr + 1.0) 

404 elif projection == 'orthographic': 

405 points_out[:, 2] = num.sqrt(num.maximum(1.0 - rsqr, 0.0)) 

406 points_out[:, 1] = points[:, 1] 

407 points_out[:, 0] = points[:, 0] 

408 else: 

409 raise BeachballError( 

410 'invalid argument for projection: %s' % projection) 

411 

412 return points_out 

413 

414 

415def deco_part(mt, mt_type='full', view='top'): 

416 mt = mtm.as_mt(mt) 

417 

418 if isinstance(view, str): 

419 if view == 'top': 

420 pass 

421 elif view == 'north': 

422 mt = mt.rotated(_view_north) 

423 elif view == 'south': 

424 mt = mt.rotated(_view_south) 

425 elif view == 'east': 

426 mt = mt.rotated(_view_east) 

427 elif view == 'west': 

428 mt = mt.rotated(_view_west) 

429 elif isinstance(view, tuple): 

430 mt = mt.rotated(view_rotation(*view)) 

431 else: 

432 raise BeachballError( 

433 'Invaild argument for `view`. Allowed values are "top", "north", ' 

434 '"south", "east", "west" or a tuple of angles `(strike, dip)` ' 

435 'orienting the view plane.') 

436 

437 if mt_type == 'full': 

438 return mt 

439 

440 res = mt.standard_decomposition() 

441 m = dict( 

442 dc=res[1][2], 

443 deviatoric=res[3][2])[mt_type] 

444 

445 return mtm.MomentTensor(m=m) 

446 

447 

448def choose_transform(axes, size_units, position, size): 

449 

450 if size_units == 'points': 

451 transform = _FixedPointOffsetTransform( 

452 axes.transData, 

453 axes.figure.dpi_scale_trans, 

454 position) 

455 

456 if size is None: 

457 size = 12. 

458 

459 size = size * 0.5 / 72. 

460 position = (0., 0.) 

461 

462 elif size_units == 'data': 

463 transform = axes.transData 

464 

465 if size is None: 

466 size = 1.0 

467 

468 size = size * 0.5 

469 

470 elif size_units == 'axes': 

471 transform = axes.transAxes 

472 if size is None: 

473 size = 1. 

474 

475 size = size * .5 

476 

477 else: 

478 raise BeachballError( 

479 'invalid argument for size_units: %s' % size_units) 

480 

481 position = num.asarray(position, dtype=num.float64) 

482 

483 return transform, position, size 

484 

485 

486def mt2beachball( 

487 mt, 

488 beachball_type='deviatoric', 

489 position=(0., 0.), 

490 size=None, 

491 color_t='red', 

492 color_p='white', 

493 edgecolor='black', 

494 linewidth=2, 

495 projection='lambert', 

496 view='top'): 

497 

498 position = num.asarray(position, dtype=num.float64) 

499 size = size or 1 

500 mt = deco_part(mt, beachball_type, view) 

501 

502 eig = mt.eigensystem() 

503 if eig[0] == 0. and eig[1] == 0. and eig[2] == 0: 

504 raise BeachballError('eigenvalues are zero') 

505 

506 data = [] 

507 for (group, patches, patches_lower, patches_upper, 

508 lines, lines_lower, lines_upper) in eig2gx(eig): 

509 

510 if group == 'P': 

511 color = color_p 

512 else: 

513 color = color_t 

514 

515 for poly in patches_upper: 

516 verts = project(poly, projection)[:, ::-1] * size + \ 

517 position[NA, :] 

518 data.append((verts, color, color, 1.0)) 

519 

520 for poly in lines_upper: 

521 verts = project(poly, projection)[:, ::-1] * size + \ 

522 position[NA, :] 

523 data.append((verts, 'none', edgecolor, linewidth)) 

524 return data 

525 

526 

527def plot_beachball_mpl( 

528 mt, axes, 

529 beachball_type='deviatoric', 

530 position=(0., 0.), 

531 size=None, 

532 zorder=0, 

533 color_t='red', 

534 color_p='white', 

535 edgecolor='black', 

536 linewidth=2, 

537 alpha=1.0, 

538 arcres=181, 

539 decimation=1, 

540 projection='lambert', 

541 size_units='points', 

542 view='top'): 

543 

544 ''' 

545 Plot beachball diagram to a Matplotlib plot 

546 

547 :param mt: :py:class:`pyrocko.moment_tensor.MomentTensor` object or an 

548 array or sequence which can be converted into an MT object 

549 :param beachball_type: ``'deviatoric'`` (default), ``'full'``, or ``'dc'`` 

550 :param position: position of the beachball in data coordinates 

551 :param size: diameter of the beachball either in points or in data 

552 coordinates, depending on the ``size_units`` setting 

553 :param zorder: (passed through to matplotlib drawing functions) 

554 :param color_t: color for compressional quadrants (default: ``'red'``) 

555 :param color_p: color for extensive quadrants (default: ``'white'``) 

556 :param edgecolor: color for lines (default: ``'black'``) 

557 :param linewidth: linewidth in points (default: ``2``) 

558 :param alpha: (passed through to matplotlib drawing functions) 

559 :param projection: ``'lambert'`` (default), ``'stereographic'``, or 

560 ``'orthographic'`` 

561 :param size_units: ``'points'`` (default) or ``'data'``, where the 

562 latter causes the beachball to be projected in the plots data 

563 coordinates (axes must have an aspect ratio of 1.0 or the 

564 beachball will be shown distorted when using this). 

565 :param view: View the beachball from ``'top'``, ``'north'``, ``'south'``, 

566 ``'east'`` or ``'west'``, or project onto plane given by 

567 ``(strike, dip)``. Useful to show beachballs in cross-sections. 

568 Default is ``'top'``. 

569 ''' 

570 

571 transform, position, size = choose_transform( 

572 axes, size_units, position, size) 

573 

574 mt = deco_part(mt, beachball_type, view) 

575 

576 eig = mt.eigensystem() 

577 if eig[0] == 0. and eig[1] == 0. and eig[2] == 0: 

578 raise BeachballError('eigenvalues are zero') 

579 

580 data = [] 

581 for (group, patches, patches_lower, patches_upper, 

582 lines, lines_lower, lines_upper) in eig2gx(eig, arcres): 

583 

584 if group == 'P': 

585 color = color_p 

586 else: 

587 color = color_t 

588 

589 # plot "upper" features for lower hemisphere, because coordinate system 

590 # is NED 

591 

592 for poly in patches_upper: 

593 verts = project(poly, projection)[:, ::-1] * size + position[NA, :] 

594 if alpha == 1.0: 

595 data.append( 

596 (verts[::decimation], color, color, linewidth)) 

597 else: 

598 data.append( 

599 (verts[::decimation], color, 'none', 0.0)) 

600 

601 for poly in lines_upper: 

602 verts = project(poly, projection)[:, ::-1] * size + position[NA, :] 

603 data.append( 

604 (verts[::decimation], 'none', edgecolor, linewidth)) 

605 

606 patches = [] 

607 for (path, facecolor, edgecolor, linewidth) in data: 

608 patches.append(Polygon( 

609 xy=path, facecolor=facecolor, 

610 edgecolor=edgecolor, 

611 linewidth=linewidth, 

612 alpha=alpha)) 

613 

614 collection = PatchCollection( 

615 patches, zorder=zorder, transform=transform, match_original=True) 

616 

617 axes.add_artist(collection) 

618 return collection 

619 

620 

621def mts2amps(mts, projection, beachball_type, grid_resolution=200, mask=True, 

622 view='top'): 

623 

624 n_balls = len(mts) 

625 nx = grid_resolution 

626 ny = grid_resolution 

627 

628 x = num.linspace(-1., 1., nx) 

629 y = num.linspace(-1., 1., ny) 

630 

631 vecs2 = num.zeros((nx * ny, 2), dtype=num.float64) 

632 vecs2[:, 0] = num.tile(x, ny) 

633 vecs2[:, 1] = num.repeat(y, nx) 

634 

635 ii_ok = vecs2[:, 0]**2 + vecs2[:, 1]**2 <= 1.0 

636 amps = num_full(nx * ny, num.nan, dtype=num.float64) 

637 

638 amps[ii_ok] = 0. 

639 for mt in mts: 

640 mt = deco_part(mt, beachball_type, view) 

641 

642 ep, en, et, vp, vn, vt = mt.eigensystem() 

643 

644 vecs3_ok = inverse_project(vecs2[ii_ok, :], projection) 

645 

646 to_e = num.vstack((vn, vt, vp)) 

647 

648 vecs_e = num.dot(to_e, vecs3_ok.T).T 

649 rtp = numpy_xyz2rtp(vecs_e) 

650 

651 atheta, aphi = rtp[:, 1], rtp[:, 2] 

652 amps_ok = ep * num.cos(atheta)**2 + ( 

653 en * num.cos(aphi)**2 + et * num.sin(aphi)**2) * num.sin(atheta)**2 

654 

655 if mask: 

656 amps_ok[amps_ok > 0] = 1. 

657 amps_ok[amps_ok < 0] = 0. 

658 

659 amps[ii_ok] += amps_ok 

660 

661 return num.reshape(amps, (ny, nx)) / n_balls, x, y 

662 

663 

664def plot_fuzzy_beachball_mpl_pixmap( 

665 mts, axes, 

666 best_mt=None, 

667 beachball_type='deviatoric', 

668 position=(0., 0.), 

669 size=None, 

670 zorder=0, 

671 color_t='red', 

672 color_p='white', 

673 edgecolor='black', 

674 best_color='red', 

675 linewidth=2, 

676 alpha=1.0, 

677 projection='lambert', 

678 size_units='data', 

679 grid_resolution=200, 

680 method='imshow', 

681 view='top'): 

682 ''' 

683 Plot fuzzy beachball from a list of given MomentTensors 

684 

685 :param mts: list of 

686 :py:class:`pyrocko.moment_tensor.MomentTensor` object or an 

687 array or sequence which can be converted into an MT object 

688 :param best_mt: :py:class:`pyrocko.moment_tensor.MomentTensor` object or 

689 an array or sequence which can be converted into an MT object 

690 of most likely or minimum misfit solution to extra highlight 

691 :param best_color: mpl color for best MomentTensor edges, 

692 polygons are not plotted 

693 

694 See plot_beachball_mpl for other arguments 

695 ''' 

696 if size_units == 'points': 

697 raise BeachballError( 

698 'size_units="points" not supported in ' 

699 'plot_fuzzy_beachball_mpl_pixmap') 

700 

701 transform, position, size = choose_transform( 

702 axes, size_units, position, size) 

703 

704 amps, x, y = mts2amps( 

705 mts, 

706 grid_resolution=grid_resolution, 

707 projection=projection, 

708 beachball_type=beachball_type, 

709 mask=True, 

710 view=view) 

711 

712 ncolors = 256 

713 cmap = LinearSegmentedColormap.from_list( 

714 'dummy', [color_p, color_t], N=ncolors) 

715 

716 levels = num.linspace(0, 1., ncolors) 

717 if method == 'contourf': 

718 axes.contourf( 

719 position[0] + y * size, position[1] + x * size, amps.T, 

720 levels=levels, 

721 cmap=cmap, 

722 transform=transform, 

723 zorder=zorder, 

724 alpha=alpha) 

725 

726 elif method == 'imshow': 

727 axes.imshow( 

728 amps.T, 

729 extent=( 

730 position[0] + y[0] * size, 

731 position[0] + y[-1] * size, 

732 position[1] - x[0] * size, 

733 position[1] - x[-1] * size), 

734 cmap=cmap, 

735 transform=transform, 

736 zorder=zorder-0.1, 

737 alpha=alpha) 

738 else: 

739 assert False, 'invalid `method` argument' 

740 

741 # draw optimum edges 

742 if best_mt is not None: 

743 best_amps, bx, by = mts2amps( 

744 [best_mt], 

745 grid_resolution=grid_resolution, 

746 projection=projection, 

747 beachball_type=beachball_type, 

748 mask=False) 

749 

750 axes.contour( 

751 position[0] + by * size, position[1] + bx * size, best_amps.T, 

752 levels=[0.], 

753 colors=[best_color], 

754 linewidths=linewidth, 

755 transform=transform, 

756 zorder=zorder, 

757 alpha=alpha) 

758 

759 phi = num.linspace(0., 2 * PI, 361) 

760 x = num.cos(phi) 

761 y = num.sin(phi) 

762 axes.plot( 

763 position[0] + x * size, position[1] + y * size, 

764 linewidth=linewidth, 

765 color=edgecolor, 

766 transform=transform, 

767 zorder=zorder, 

768 alpha=alpha) 

769 

770 

771def plot_beachball_mpl_construction( 

772 mt, axes, 

773 show='patches', 

774 beachball_type='deviatoric', 

775 view='top'): 

776 

777 mt = deco_part(mt, beachball_type, view) 

778 eig = mt.eigensystem() 

779 

780 for (group, patches, patches_lower, patches_upper, 

781 lines, lines_lower, lines_upper) in eig2gx(eig): 

782 

783 if group == 'P': 

784 color = 'blue' 

785 lw = 1 

786 else: 

787 color = 'red' 

788 lw = 1 

789 

790 if show == 'patches': 

791 for poly in patches_upper: 

792 px, py, pz = poly.T 

793 axes.plot(*extr(poly).T, color=color, lw=lw, alpha=0.5) 

794 

795 if show == 'lines': 

796 for poly in lines_upper: 

797 px, py, pz = poly.T 

798 axes.plot(*extr(poly).T, color=color, lw=lw, alpha=0.5) 

799 

800 

801def plot_beachball_mpl_pixmap( 

802 mt, axes, 

803 beachball_type='deviatoric', 

804 position=(0., 0.), 

805 size=None, 

806 zorder=0, 

807 color_t='red', 

808 color_p='white', 

809 edgecolor='black', 

810 linewidth=2, 

811 alpha=1.0, 

812 projection='lambert', 

813 size_units='data', 

814 view='top'): 

815 

816 if size_units == 'points': 

817 raise BeachballError( 

818 'size_units="points" not supported in plot_beachball_mpl_pixmap') 

819 

820 transform, position, size = choose_transform( 

821 axes, size_units, position, size) 

822 

823 mt = deco_part(mt, beachball_type, view) 

824 

825 ep, en, et, vp, vn, vt = mt.eigensystem() 

826 

827 amps, x, y = mts2amps( 

828 [mt], projection, beachball_type, grid_resolution=200, mask=False) 

829 

830 axes.contourf( 

831 position[0] + y * size, position[1] + x * size, amps.T, 

832 levels=[-num.inf, 0., num.inf], 

833 colors=[color_p, color_t], 

834 transform=transform, 

835 zorder=zorder, 

836 alpha=alpha) 

837 

838 axes.contour( 

839 position[0] + y * size, position[1] + x * size, amps.T, 

840 levels=[0.], 

841 colors=[edgecolor], 

842 linewidths=linewidth, 

843 transform=transform, 

844 zorder=zorder, 

845 alpha=alpha) 

846 

847 phi = num.linspace(0., 2 * PI, 361) 

848 x = num.cos(phi) 

849 y = num.sin(phi) 

850 axes.plot( 

851 position[0] + x * size, position[1] + y * size, 

852 linewidth=linewidth, 

853 color=edgecolor, 

854 transform=transform, 

855 zorder=zorder, 

856 alpha=alpha) 

857 

858 

859if __name__ == '__main__': 

860 import sys 

861 import os 

862 import matplotlib.pyplot as plt 

863 from pyrocko import model 

864 

865 args = sys.argv[1:] 

866 

867 data = [] 

868 for iarg, arg in enumerate(args): 

869 

870 if os.path.exists(arg): 

871 events = model.load_events(arg) 

872 for ev in events: 

873 if not ev.moment_tensor: 

874 logger.warning('no moment tensor given for event') 

875 continue 

876 

877 data.append((ev.name, ev.moment_tensor)) 

878 else: 

879 vals = list(map(float, arg.split(','))) 

880 mt = mtm.as_mt(vals) 

881 data.append(('%i' % (iarg+1), mt)) 

882 

883 n = len(data) 

884 

885 ncols = 1 

886 while ncols**2 < n: 

887 ncols += 1 

888 

889 nrows = ncols 

890 

891 fig = plt.figure() 

892 axes = fig.add_subplot(1, 1, 1, aspect=1.) 

893 axes.axison = False 

894 axes.set_xlim(-0.05 - ncols, ncols + 0.05) 

895 axes.set_ylim(-0.05 - nrows, nrows + 0.05) 

896 

897 for ibeach, (name, mt) in enumerate(data): 

898 irow = ibeach // ncols 

899 icol = ibeach % ncols 

900 plot_beachball_mpl( 

901 mt, axes, 

902 position=(icol*2-ncols+1, -irow*2+nrows-1), 

903 size_units='data') 

904 

905 axes.annotate( 

906 name, 

907 xy=(icol*2-ncols+1, -irow*2+nrows-2), 

908 xycoords='data', 

909 xytext=(0, 0), 

910 textcoords='offset points', 

911 verticalalignment='center', 

912 horizontalalignment='center', 

913 rotation=0.) 

914 

915 plt.show()