Coverage for /usr/local/lib/python3.11/dist-packages/pyrocko/gui/snuffler/snufflings/ampspec.py: 16%

101 statements  

« prev     ^ index     » next       coverage.py v6.5.0, created at 2023-10-23 12:35 +0000

1# https://pyrocko.org - GPLv3 

2# 

3# The Pyrocko Developers, 21st Century 

4# ---|P------/S----------~Lg---------- 

5 

6from ..snuffling import Snuffling, Param, Switch 

7import numpy as num 

8from matplotlib import cm 

9 

10 

11def window(freqs, fc, b): 

12 w = num.zeros(len(freqs)) 

13 if fc == 0.: 

14 w[freqs == 0.0] = 1. 

15 return w 

16 mask = num.logical_and(freqs != 0.0, freqs != fc) 

17 T = num.log10(freqs[mask]/fc)*b 

18 w[mask] = (num.sin(T)/T)**4 

19 w[freqs == fc] = 1. 

20 w /= num.sum(w) 

21 return w 

22 

23 

24class AmpSpec(Snuffling): 

25 

26 def help(self): 

27 return ''' 

28<html> 

29<head> 

30<style type="text/css"> 

31 body { margin-left:10px }; 

32</style> 

33<body> 

34<h1 align="center">Plot Amplitude Spectrum</h1> 

35<p> 

36When smoothing is activated, a smoothing algorithm is applied as 

37proposed 

38by Konno and Ohmachi, (1998). </p> 

39<p style='font-family:courier'> 

40 Konno, K. and Omachi, T. (1998). Ground-motion characteristics 

41 estimated from spectral ratio between horizontal and vertical 

42 components of microtremor, Bull. Seism. Soc. Am., 88, 228-241 

43</p> 

44</body> 

45</html> 

46 ''' 

47 

48 def setup(self): 

49 '''Customization of the snuffling.''' 

50 

51 self.set_name('Plot Amplitude Spectrum') 

52 self.add_parameter(Switch('Smoothing', 'want_smoothing', False)) 

53 self.add_parameter(Param('Smoothing band width', 'b', 40., 1., 100.)) 

54 self.set_live_update(False) 

55 self._wins = {} 

56 

57 def call(self): 

58 '''Main work routine of the snuffling.''' 

59 

60 all = [] 

61 for traces in self.chopper_selected_traces(fallback=True): 

62 for trace in traces: 

63 all.append(trace) 

64 

65 colors = iter(cm.Accent(num.linspace(0., 1., len(all)))) 

66 if self.want_smoothing: 

67 alpha = 0.2 

68 additional = 'and smoothing' 

69 else: 

70 alpha = 1. 

71 additional = '' 

72 

73 flimits = [] 

74 alimits = [] 

75 pblabel = 'Calculating amplitude spectra %s' % additional 

76 pb = self.get_viewer().parent().get_progressbars() 

77 pb.set_status(pblabel, 0) 

78 num_traces = len(all) 

79 maxval = float(num_traces) 

80 plot_data = [] 

81 plot_data_supplement = [] 

82 for i_tr, tr in enumerate(all): 

83 val = i_tr/maxval*100. 

84 pb.set_status(pblabel, val) 

85 

86 tr.ydata = tr.ydata.astype(float) 

87 tr.ydata -= tr.ydata.mean() 

88 f, a = tr.spectrum() 

89 flimits.append(f[1]) 

90 flimits.append(f[-1]) 

91 absa = num.abs(a) 

92 labsa = num.log(absa) 

93 stdabsa = num.std(labsa) 

94 meanabsa = num.mean(labsa) 

95 lamin, lamax = meanabsa - 5*stdabsa, meanabsa + 5*stdabsa 

96 alimits.append(num.exp(lamin)) 

97 alimits.append(num.exp(lamax)) 

98 c = next(colors) 

99 plot_data.append((f, num.abs(a))) 

100 plot_data_supplement.append((c, alpha, '.'.join(tr.nslc_id))) 

101 if self.want_smoothing: 

102 smoothed = self.konnoohmachi(num.abs(a), f, self.b) 

103 plot_data.append((f, num.abs(smoothed))) 

104 plot_data_supplement.append((c, 1., '.'.join(tr.nslc_id))) 

105 self.get_viewer().update() 

106 

107 pb.set_status(pblabel, 100.) 

108 

109 fig = self.figure(name='Amplitude Spectra') 

110 p = fig.add_subplot(111) 

111 args = ('c', 'alpha', 'label') 

112 for d, s in zip(plot_data, plot_data_supplement): 

113 p.plot(*d, **dict(zip(args, s))) 

114 

115 p.set_xscale('log') 

116 p.set_yscale('log') 

117 

118 amin, amax = num.min(alimits), num.max(alimits) 

119 p.set_ylim(amin, amax) 

120 

121 fmin, fmax = num.min(flimits), num.max(flimits) 

122 p.set_xlim(fmin, fmax) 

123 

124 p.set_xlabel('Frequency [Hz]') 

125 p.set_ylabel('Counts') 

126 

127 handles, labels = p.get_legend_handles_labels() 

128 leg_dict = dict(zip(labels, handles)) 

129 if num_traces > 1: 

130 p.legend(list(leg_dict.values()), list(leg_dict.keys()), 

131 loc=2, 

132 borderaxespad=0., 

133 bbox_to_anchor=((1.05, 1.))) 

134 fig.subplots_adjust(right=0.8, 

135 left=0.1) 

136 else: 

137 p.set_title(list(leg_dict.keys())[0], fontsize=16) 

138 fig.subplots_adjust(right=0.9, 

139 left=0.1) 

140 fig.canvas.draw() 

141 

142 def konnoohmachi(self, amps, freqs, b=20): 

143 smooth = num.zeros(len(freqs), dtype=freqs.dtype) 

144 amps = num.array(amps) 

145 for i, fc in enumerate(freqs): 

146 fkey = tuple((b, fc, freqs[0], freqs[1], freqs[-1])) 

147 if fkey in self._wins.keys(): 

148 win = self._wins[fkey] 

149 else: 

150 win = window(freqs, fc, b) 

151 self._wins[fkey] = win 

152 smooth[i] = num.sum(win*amps) 

153 

154 return smooth 

155 

156 

157def __snufflings__(): 

158 ''' 

159 Returns a list of snufflings to be exported by this module. 

160 ''' 

161 

162 return [AmpSpec()]