import logging
import numpy as num
from scipy import linalg as splinalg
from pyrocko import gf
from pyrocko.guts import String, Bool, Dict, List
import os
from grond.meta import Parameter, has_get_plot_classes
from ..base import MisfitConfig, MisfitTarget, MisfitResult, TargetGroup
guts_prefix = 'grond'
logger = logging.getLogger('grond.targets.satellite.target')
[docs]class SatelliteMisfitConfig(MisfitConfig):
"""Carries the misfit configuration."""
optimise_orbital_ramp = Bool.T(
default=True,
help='Switch to account for a linear orbital ramp or not')
ranges = Dict.T(
String.T(), gf.Range.T(),
default={'offset': '-0.5 .. 0.5',
'ramp_east': '-1e-7 .. 1e-7',
'ramp_north': '-1e-7 .. 1e-7'
},
help='These parameters give bounds for an offset [m], a linear'
' gradient in east direction [m/m] and a linear gradient in north'
' direction [m/m]. Note, while the optimisation of these ramps'
' is individual for each target, the ranges set here are common'
' for all satellite targets.')
[docs]class SatelliteTargetGroup(TargetGroup):
r"""Handles maps of static ground motion from satellite observations (InSAR)
The InSAR displacement maps post-processed by the `pyrocko` module `kite`
are usually `Quadtree` downsampled (Jonsson, 2002). Each data point has a
latitude, longitude, Line-of-sight displacement value [m] as well as an
orientation and elevation angle, which define the Line-of-Sight. The data
are associated with a weight matrix, which is the inverse of a full
variance-covariance matrix (Sudhaus \& Jonsson, 2009). In principle, these
data sets could stem from pixel offset maps. See also the documentation of
the `kite` module.
"""
kite_scenes = List.T(
optional=True,
help='List of InSAR data files prepared \
by the ``pyrocko`` module ``kite``')
misfit_config = SatelliteMisfitConfig.T(
help='Settings for the objective function of these targets')
def get_targets(self, ds, event, default_path='none'):
logger.debug('Selecting satellite targets...')
targets = []
for scene in ds.get_kite_scenes():
if scene.meta.scene_id not in self.kite_scenes and\
'*all' not in self.kite_scenes:
continue
qt = scene.quadtree
lats = num.empty(qt.nleaves)
lons = num.empty(qt.nleaves)
lats.fill(qt.frame.llLat)
lons.fill(qt.frame.llLon)
if qt.frame.isDegree():
logger.debug('Target "%s" is referenced in degree.'
% scene.meta.scene_id)
lons += qt.leaf_focal_points[:, 0]
lats += qt.leaf_focal_points[:, 1]
east_shifts = num.zeros_like(lats)
north_shifts = num.zeros_like(lats)
elif qt.frame.isMeter():
logger.debug('Target "%s" is referenced in meter.'
% scene.meta.scene_id)
east_shifts = qt.leaf_focal_points[:, 0]
north_shifts = qt.leaf_focal_points[:, 1]
else:
assert False
sat_target = SatelliteMisfitTarget(
quantity='displacement',
scene_id=scene.meta.scene_id,
lats=lats,
lons=lons,
east_shifts=east_shifts,
north_shifts=north_shifts,
theta=qt.leaf_thetas,
phi=qt.leaf_phis,
tsnapshot=None,
interpolation=self.interpolation,
store_id=self.store_id,
normalisation_family=self.normalisation_family,
path=self.path or default_path,
misfit_config=self.misfit_config)
sat_target.set_dataset(ds)
targets.append(sat_target)
return targets
[docs]class SatelliteMisfitResult(gf.Result, MisfitResult):
"""Carries the observations for a target and corresponding synthetics."""
statics_syn = Dict.T(
optional=True,
help='Predicted static displacements for a target (synthetics).')
statics_obs = Dict.T(
optional=True,
help='Observed static displacement for a target.')
[docs]@has_get_plot_classes
class SatelliteMisfitTarget(gf.SatelliteTarget, MisfitTarget):
"""Handles and carries out operations related to the objective functions.
Standard operations are the calculation of the weighted misfit between
observed and predicted (synthetic) data. If enabled in the misfit
configuration, orbital ramps are optimized for.
"""
scene_id = String.T(
help='UID string each Kite displacemente scene.'
' Corresponds to Kite scene_id.')
misfit_config = SatelliteMisfitConfig.T(
help='Configuration of the ``SatelliteTarget``')
can_bootstrap_residuals = True
available_parameters = [
Parameter('offset', 'm'),
Parameter('ramp_north', 'm/m'),
Parameter('ramp_east', 'm/m')]
def __init__(self, *args, **kwargs):
gf.SatelliteTarget.__init__(self, *args, **kwargs)
MisfitTarget.__init__(self, **kwargs)
if not self.misfit_config.optimise_orbital_ramp:
self.parameters = []
else:
self.parameters = self.available_parameters
self.parameter_values = {}
self._noise_weight_matrix = None
@property
def target_ranges(self):
return self.misfit_config.ranges
def string_id(self):
return '.'.join([self.path, self.scene_id])
@property
def id(self):
return self.scene_id
def set_dataset(self, ds):
MisfitTarget.set_dataset(self, ds)
@property
def nmisfits(self):
return self.lats.size
@property
def scene(self):
return self._ds.get_kite_scene(self.scene_id)
[docs] def post_process(self, engine, source, statics):
"""Applies the objective function.
As a result the weighted misfits are given and the observed and
synthetic data. For the satellite target the orbital ramp is
calculated and applied here."""
scene = self.scene
quadtree = scene.quadtree
obs = quadtree.leaf_medians
if self.misfit_config.optimise_orbital_ramp:
stat_level = num.full_like(obs, self.parameter_values['offset'])
stat_level += (quadtree.leaf_center_distance[:, 0]
* self.parameter_values['ramp_east'])
stat_level += (quadtree.leaf_center_distance[:, 1]
* self.parameter_values['ramp_north'])
statics['displacement.los'] += stat_level
stat_syn = statics['displacement.los']
res = obs - stat_syn
misfit_value = res
misfit_norm = obs
mf = num.vstack([misfit_value, misfit_norm]).T
result = SatelliteMisfitResult(
misfits=mf)
if self._result_mode == 'full':
result.statics_syn = statics
result.statics_obs = quadtree.leaf_medians
return result
def get_combined_weight(self):
if self._combined_weight is None:
# invcov = self.scene.covariance.weight_matrix
# self._combined_weight = invcov * self.manual_weight
self._combined_weight = num.full(self.nmisfits, self.manual_weight)
return self._combined_weight
[docs] def prepare_modelling(self, engine, source, targets):
return [self]
[docs] def finalize_modelling(
self, engine, source, modelling_targets, modelling_results):
return modelling_results[0]
def init_bootstrap_residuals(self, nbootstraps, rstate=None, nthreads=0):
logger.info(
'Scene "%s", initializing bootstrapping residuals from noise '
'pertubations...' % self.scene_id)
if rstate is None:
rstate = num.random.RandomState()
scene = self.scene
qt = scene.quadtree
cov = scene.covariance
bootstraps = num.zeros((nbootstraps, qt.nleaves))
try:
# TODO:mi Signal handler is not given back to the main task!
# This is a python3.7 bug
from concurrent.futures import ThreadPoolExecutor
nthreads = os.cpu_count() if not nthreads else nthreads
logger.debug('Using %d threads'
' for bootstrapping SatelliteTargets.', nthreads)
with ThreadPoolExecutor(max_workers=nthreads) as executor:
res = executor.map(
cov.getQuadtreeNoise,
[rstate for _ in range(nbootstraps)])
for ibs, bs in enumerate(res):
bootstraps[ibs, :] = bs
except ImportError:
for ibs in range(nbootstraps):
if not (ibs+1) % 5:
logger.info('Calculating noise realisation %d/%d.'
% (ibs+1, nbootstraps))
bootstraps[ibs, :] = cov.getQuadtreeNoise(rstate=rstate)
self.set_bootstrap_residuals(bootstraps)
@classmethod
def get_plot_classes(cls):
from . import plot
plots = super(SatelliteMisfitTarget, cls).get_plot_classes()
plots.extend(plot.get_plot_classes())
return plots
__all__ = '''
SatelliteTargetGroup
SatelliteMisfitConfig
SatelliteMisfitTarget
SatelliteMisfitResult
'''.split()