1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

# http://pyrocko.org - GPLv3 

# 

# The Pyrocko Developers, 21st Century 

# ---|P------/S----------~Lg---------- 

# python 2/3 

from __future__ import absolute_import 

 

from math import pi as PI 

import logging 

import numpy as num 

 

from matplotlib.collections import PatchCollection 

from matplotlib.patches import Polygon 

from matplotlib.transforms import Transform 

from matplotlib.colors import LinearSegmentedColormap 

 

from pyrocko import moment_tensor as mtm 

from pyrocko.util import num_full 

 

logger = logging.getLogger('pyrocko.plot.beachball') 

 

NA = num.newaxis 

 

_view_south = num.array([[0, 0, -1], 

[0, 1, 0], 

[1, 0, 0]]) 

 

_view_north = _view_south.T 

 

_view_east = num.array([[1, 0, 0], 

[0, 0, -1], 

[0, 1, 0]]) 

 

_view_west = _view_east.T 

 

 

class BeachballError(Exception): 

pass 

 

 

class FixedPointOffsetTransform(Transform): 

def __init__(self, trans, dpi_scale_trans, fixed_point): 

Transform.__init__(self) 

self.input_dims = self.output_dims = 2 

self.has_inverse = False 

self.trans = trans 

self.dpi_scale_trans = dpi_scale_trans 

self.fixed_point = num.asarray(fixed_point, dtype=num.float64) 

 

def transform_non_affine(self, values): 

fp = self.trans.transform(self.fixed_point) 

return fp + self.dpi_scale_trans.transform(values) 

 

 

def vnorm(points): 

return num.sqrt(num.sum(points**2, axis=1)) 

 

 

def clean_poly(points): 

if not num.all(points[0, :] == points[-1, :]): 

points = num.vstack((points, points[0:1, :])) 

 

dupl = num.concatenate( 

(num.all(points[1:, :] == points[:-1, :], axis=1), [False])) 

points = points[num.logical_not(dupl)] 

return points 

 

 

def close_poly(points): 

if not num.all(points[0, :] == points[-1, :]): 

points = num.vstack((points, points[0:1, :])) 

 

return points 

 

 

def circulation(points, axis): 

# assert num.all(points[:, axis] >= 0.0) or num.all(points[:, axis] <= 0.0) 

 

points2 = points[:, ((axis+2) % 3, (axis+1) % 3)].copy() 

points2 *= 1.0 / num.sqrt(1.0 + num.abs(points[:, axis]))[:, num.newaxis] 

 

result = -num.sum( 

(points2[1:, 0] - points2[:-1, 0]) * 

(points2[1:, 1] + points2[:-1, 1])) 

 

result -= (points2[0, 0] - points2[-1, 0]) \ 

* (points2[0, 1] + points2[-1, 1]) 

return result 

 

 

def spoly_cut(l_points, axis=0, nonsimple=True, arcres=181): 

dphi = 2.*PI / (2*arcres) 

 

# cut sub-polygons and gather crossing point information 

crossings = [] 

snippets = {} 

for ipath, points in enumerate(l_points): 

if not num.all(points[0, :] == points[-1, :]): 

points = num.vstack((points, points[0:1, :])) 

 

# get upward crossing points 

iup = num.where(num.logical_and(points[:-1, axis] <= 0., 

points[1:, axis] > 0.))[0] 

aup = - points[iup, axis] / (points[iup+1, axis] - points[iup, axis]) 

pup = points[iup, :] + aup[:, num.newaxis] * (points[iup+1, :] - 

points[iup, :]) 

phiup = num.arctan2(pup[:, (axis+2) % 3], pup[:, (axis+1) % 3]) 

 

for i in range(len(iup)): 

crossings.append((phiup[i], ipath, iup[i], 1, pup[i], [1, -1])) 

 

# get downward crossing points 

idown = num.where(num.logical_and(points[:-1, axis] > 0., 

points[1:, axis] <= 0.))[0] 

adown = - points[idown+1, axis] / (points[idown, axis] - 

points[idown+1, axis]) 

pdown = points[idown+1, :] + adown[:, num.newaxis] * ( 

points[idown, :] - points[idown+1, :]) 

phidown = num.arctan2(pdown[:, (axis+2) % 3], pdown[:, (axis+1) % 3]) 

 

for i in range(idown.size): 

crossings.append( 

(phidown[i], ipath, idown[i], -1, pdown[i], [1, -1])) 

 

icuts = num.sort(num.concatenate((iup, idown))) 

 

for i in range(icuts.size-1): 

snippets[ipath, icuts[i]] = ( 

ipath, icuts[i+1], points[icuts[i]+1:icuts[i+1]+1]) 

 

if icuts.size: 

points_last = num.concatenate(( 

points[icuts[-1]+1:], 

points[:icuts[0]+1])) 

 

snippets[ipath, icuts[-1]] = (ipath, icuts[0], points_last) 

else: 

snippets[ipath, 0] = (ipath, 0, points) 

 

crossings.sort() 

 

# assemble new sub-polygons 

current = snippets.pop(list(snippets.keys())[0]) 

outs = [[]] 

while True: 

outs[-1].append(current[2]) 

for i, c1 in enumerate(crossings): 

if c1[1:3] == current[:2]: 

direction = -1 * c1[3] 

break 

else: 

if not snippets: 

break 

current = snippets.pop(list(snippets.keys())[0]) 

outs.append([]) 

continue 

 

while True: 

i = (i + direction) % len(crossings) 

if crossings[i][3] == direction and direction in crossings[i][-1]: 

break 

 

c2 = crossings[i] 

c2[-1].remove(direction) 

 

phi1 = c1[0] 

phi2 = c2[0] 

if direction == 1: 

if phi1 > phi2: 

phi2 += PI * 2. 

 

if direction == -1: 

if phi1 < phi2: 

phi2 -= PI * 2. 

 

n = int(abs(phi2 - phi1) / dphi) + 2 

 

phis = num.linspace(phi1, phi2, n) 

cpoints = num.zeros((n, 3)) 

cpoints[:, (axis+1) % 3] = num.cos(phis) 

cpoints[:, (axis+2) % 3] = num.sin(phis) 

cpoints[:, axis] = 0.0 

 

outs[-1].append(cpoints) 

 

try: 

current = snippets[c2[1:3]] 

del snippets[c2[1:3]] 

 

except KeyError: 

if not snippets: 

break 

 

current = snippets.pop(list(snippets.keys())[0]) 

outs.append([]) 

 

# separate hemispheres, force polygons closed, remove duplicate points 

# remove polygons with less than 3 points (4, when counting repeated 

# endpoint) 

 

outs_upper = [] 

outs_lower = [] 

for out in outs: 

if out: 

out = clean_poly(num.vstack(out)) 

if out.shape[0] >= 4: 

if num.sum(out[:, axis]) > 0.0: 

outs_upper.append(out) 

else: 

outs_lower.append(out) 

 

if nonsimple and ( 

len(crossings) == 0 or 

len(outs_upper) == 0 or 

len(outs_lower) == 0): 

 

# check if we are cutting between holes 

need_divider = False 

if outs_upper: 

candis = sorted( 

outs_upper, key=lambda out: num.min(out[:, axis])) 

 

if circulation(candis[0], axis) > 0.0: 

need_divider = True 

 

if outs_lower: 

candis = sorted( 

outs_lower, key=lambda out: num.max(out[:, axis])) 

 

if circulation(candis[0], axis) < 0.0: 

need_divider = True 

 

if need_divider: 

phi1 = 0. 

phi2 = PI*2. 

n = int(abs(phi2 - phi1) / dphi) + 2 

 

phis = num.linspace(phi1, phi2, n) 

cpoints = num.zeros((n, 3)) 

cpoints[:, (axis+1) % 3] = num.cos(phis) 

cpoints[:, (axis+2) % 3] = num.sin(phis) 

cpoints[:, axis] = 0.0 

 

outs_upper.append(cpoints) 

outs_lower.append(cpoints[::-1, :]) 

 

return outs_lower, outs_upper 

 

 

def numpy_rtp2xyz(rtp): 

r = rtp[:, 0] 

theta = rtp[:, 1] 

phi = rtp[:, 2] 

vecs = num.empty(rtp.shape, dtype=num.float64) 

vecs[:, 0] = r*num.sin(theta)*num.cos(phi) 

vecs[:, 1] = r*num.sin(theta)*num.sin(phi) 

vecs[:, 2] = r*num.cos(theta) 

return vecs 

 

 

def numpy_xyz2rtp(xyz): 

x, y, z = xyz[:, 0], xyz[:, 1], xyz[:, 2] 

vecs = num.empty(xyz.shape, dtype=num.float64) 

vecs[:, 0] = num.sqrt(x**2+y**2+z**2) 

vecs[:, 1] = num.arctan2(num.sqrt(x**2+y**2), z) 

vecs[:, 2] = num.arctan2(y, x) 

return vecs 

 

 

def circle_points(aphi, sign=1.0): 

vecs = num.empty((aphi.size, 3), dtype=num.float64) 

vecs[:, 0] = num.cos(sign*aphi) 

vecs[:, 1] = num.sin(sign*aphi) 

vecs[:, 2] = 0.0 

return vecs 

 

 

def eig2gx(eig, arcres=181): 

aphi = num.linspace(0., 2.*PI, arcres) 

ep, en, et, vp, vn, vt = eig 

 

mt_sign = num.sign(ep + en + et) 

 

groups = [] 

for (pt_name, pt_sign) in [('P', -1.), ('T', 1.)]: 

patches = [] 

patches_lower = [] 

patches_upper = [] 

lines = [] 

lines_lower = [] 

lines_upper = [] 

for iperm, (va, vb, vc, ea, eb, ec) in enumerate([ 

(vp, vn, vt, ep, en, et), 

(vt, vp, vn, et, ep, en)]): # (vn, vt, vp, en, et, ep)]): 

 

perm_sign = [-1.0, 1.0][iperm] 

to_e = num.vstack((vb, vc, va)) 

from_e = to_e.T 

 

poly_es = [] 

polys = [] 

for sign in (-1., 1.): 

xphi = perm_sign*pt_sign*sign*aphi 

denom = eb*num.cos(xphi)**2 + ec*num.sin(xphi)**2 

if num.any(denom == 0.): 

continue 

 

Y = -ea/denom 

if num.any(Y < 0.): 

continue 

 

xtheta = num.arctan(num.sqrt(Y)) 

rtp = num.empty(xphi.shape+(3,), dtype=num.float64) 

rtp[:, 0] = 1. 

if sign > 0: 

rtp[:, 1] = xtheta 

else: 

rtp[:, 1] = PI - xtheta 

 

rtp[:, 2] = xphi 

poly_e = numpy_rtp2xyz(rtp) 

poly = num.dot(from_e, poly_e.T).T 

poly[:, 2] -= 0.001 

 

poly_es.append(poly_e) 

polys.append(poly) 

 

if polys: 

polys_lower, polys_upper = spoly_cut(polys, 2, arcres=arcres) 

lines.extend(polys) 

lines_lower.extend(polys_lower) 

lines_upper.extend(polys_upper) 

 

if poly_es: 

for aa in spoly_cut(poly_es, 0, arcres=arcres): 

for bb in spoly_cut(aa, 1, arcres=arcres): 

for cc in spoly_cut(bb, 2, arcres=arcres): 

for poly_e in cc: 

poly = num.dot(from_e, poly_e.T).T 

poly[:, 2] -= 0.001 

polys_lower, polys_upper = spoly_cut( 

[poly], 2, nonsimple=False, arcres=arcres) 

 

patches.append(poly) 

patches_lower.extend(polys_lower) 

patches_upper.extend(polys_upper) 

 

if not patches: 

if mt_sign * pt_sign == 1.: 

patches_lower.append(circle_points(aphi, -1.0)) 

patches_upper.append(circle_points(aphi, 1.0)) 

lines_lower.append(circle_points(aphi, -1.0)) 

lines_upper.append(circle_points(aphi, 1.0)) 

 

groups.append(( 

pt_name, 

patches, patches_lower, patches_upper, 

lines, lines_lower, lines_upper)) 

 

return groups 

 

 

def extr(points): 

pmean = num.mean(points, axis=0) 

return points + pmean*0.05 

 

 

def draw_eigenvectors_mpl(eig, axes): 

vp, vn, vt = eig[3:] 

for lab, v in [('P', vp), ('N', vn), ('T', vt)]: 

sign = num.sign(v[2]) + (v[2] == 0.0) 

axes.plot(sign*v[1], sign*v[0], 'o', color='black') 

axes.text(sign*v[1], sign*v[0], ' '+lab) 

 

 

def project(points, projection='lambert'): 

points_out = points[:, :2].copy() 

if projection == 'lambert': 

factor = 1.0 / num.sqrt(1.0 + points[:, 2]) 

elif projection == 'stereographic': 

factor = 1.0 / (1.0 + points[:, 2]) 

elif projection == 'orthographic': 

factor = None 

else: 

raise BeachballError( 

'invalid argument for projection: %s' % projection) 

 

if factor is not None: 

points_out *= factor[:, num.newaxis] 

 

return points_out 

 

 

def inverse_project(points, projection='lambert'): 

points_out = num.zeros((points.shape[0], 3)) 

 

rsqr = points[:, 0]**2 + points[:, 1]**2 

if projection == 'lambert': 

points_out[:, 2] = 1.0 - rsqr 

points_out[:, 1] = num.sqrt(2.0 - rsqr) * points[:, 1] 

points_out[:, 0] = num.sqrt(2.0 - rsqr) * points[:, 0] 

elif projection == 'stereographic': 

points_out[:, 2] = - (rsqr - 1.0) / (rsqr + 1.0) 

points_out[:, 1] = 2.0 * points[:, 1] / (rsqr + 1.0) 

points_out[:, 0] = 2.0 * points[:, 0] / (rsqr + 1.0) 

elif projection == 'orthographic': 

points_out[:, 2] = num.sqrt(num.maximum(1.0 - rsqr, 0.0)) 

points_out[:, 1] = points[:, 1] 

points_out[:, 0] = points[:, 0] 

else: 

raise BeachballError( 

'invalid argument for projection: %s' % projection) 

 

return points_out 

 

 

def deco_part(mt, mt_type='full', view='top'): 

assert view in ('top', 'north', 'south', 'east', 'west'),\ 

'Allowed views are top, north, south, east and west' 

mt = mtm.as_mt(mt) 

 

if view == 'top': 

pass 

elif view == 'north': 

mt = mt.rotated(_view_north) 

elif view == 'south': 

mt = mt.rotated(_view_south) 

elif view == 'east': 

mt = mt.rotated(_view_east) 

elif view == 'west': 

mt = mt.rotated(_view_west) 

 

if mt_type == 'full': 

return mt 

 

res = mt.standard_decomposition() 

m = dict( 

dc=res[1][2], 

deviatoric=res[3][2])[mt_type] 

 

return mtm.MomentTensor(m=m) 

 

 

def choose_transform(axes, size_units, position, size): 

 

if size_units == 'points': 

transform = FixedPointOffsetTransform( 

axes.transData, 

axes.figure.dpi_scale_trans, 

position) 

 

if size is None: 

size = 12. 

 

size = size * 0.5 / 72. 

position = (0., 0.) 

 

elif size_units == 'data': 

transform = axes.transData 

 

if size is None: 

size = 1.0 

 

size = size * 0.5 

 

elif size_units == 'axes': 

transform = axes.transAxes 

if size is None: 

size = 1. 

 

size = size * .5 

 

else: 

raise BeachballError( 

'invalid argument for size_units: %s' % size_units) 

 

position = num.asarray(position, dtype=num.float64) 

 

return transform, position, size 

 

 

def mt2beachball( 

mt, 

beachball_type='deviatoric', 

position=(0., 0.), 

size=None, 

color_t='red', 

color_p='white', 

edgecolor='black', 

linewidth=2, 

projection='lambert', 

view='top'): 

 

position = num.asarray(position, dtype=num.float64) 

size = size or 1 

mt = deco_part(mt, beachball_type, view) 

 

eig = mt.eigensystem() 

if eig[0] == 0. and eig[1] == 0. and eig[2] == 0: 

raise BeachballError('eigenvalues are zero') 

 

data = [] 

for (group, patches, patches_lower, patches_upper, 

lines, lines_lower, lines_upper) in eig2gx(eig): 

 

if group == 'P': 

color = color_p 

else: 

color = color_t 

 

for poly in patches_upper: 

verts = project(poly, projection)[:, ::-1] * size + \ 

position[NA, :] 

data.append((verts, color, color, 1.0)) 

 

for poly in lines_upper: 

verts = project(poly, projection)[:, ::-1] * size + \ 

position[NA, :] 

data.append((verts, 'none', edgecolor, linewidth)) 

return data 

 

 

def plot_beachball_mpl( 

mt, axes, 

beachball_type='deviatoric', 

position=(0., 0.), 

size=None, 

zorder=0, 

color_t='red', 

color_p='white', 

edgecolor='black', 

linewidth=2, 

alpha=1.0, 

arcres=181, 

decimation=1, 

projection='lambert', 

size_units='points', 

view='top'): 

 

''' 

Plot beachball diagram to a Matplotlib plot 

 

:param mt: :py:class:`pyrocko.moment_tensor.MomentTensor` object or an 

array or sequence which can be converted into an MT object 

:param beachball_type: ``'deviatoric'`` (default), ``'full'``, or ``'dc'`` 

:param position: position of the beachball in data coordinates 

:param size: diameter of the beachball either in points or in data 

coordinates, depending on the ``size_units`` setting 

:param zorder: (passed through to matplotlib drawing functions) 

:param color_t: color for compressional quadrants (default: ``'red'``) 

:param color_p: color for extensive quadrants (default: ``'white'``) 

:param edgecolor: color for lines (default: ``'black'``) 

:param linewidth: linewidth in points (default: ``2``) 

:param alpha: (passed through to matplotlib drawing functions) 

:param projection: ``'lambert'`` (default), ``'stereographic'``, or 

``'orthographic'`` 

:param size_units: ``'points'`` (default) or ``'data'``, where the 

latter causes the beachball to be projected in the plots data 

coordinates (axes must have an aspect ratio of 1.0 or the 

beachball will be shown distorted when using this). 

:param view: View the beachball from ``top``, ``north``, ``south``, 

``east`` or ``west``. Useful for to show beachballs in cross-sections. 

Default is ``top``. 

''' 

 

transform, position, size = choose_transform( 

axes, size_units, position, size) 

 

mt = deco_part(mt, beachball_type, view) 

 

eig = mt.eigensystem() 

if eig[0] == 0. and eig[1] == 0. and eig[2] == 0: 

raise BeachballError('eigenvalues are zero') 

 

data = [] 

for (group, patches, patches_lower, patches_upper, 

lines, lines_lower, lines_upper) in eig2gx(eig, arcres): 

 

if group == 'P': 

color = color_p 

else: 

color = color_t 

 

# plot "upper" features for lower hemisphere, because coordinate system 

# is NED 

 

for poly in patches_upper: 

verts = project(poly, projection)[:, ::-1] * size + position[NA, :] 

if alpha == 1.0: 

data.append( 

(verts[::decimation], color, color, linewidth)) 

else: 

data.append( 

(verts[::decimation], color, 'none', 0.0)) 

 

for poly in lines_upper: 

verts = project(poly, projection)[:, ::-1] * size + position[NA, :] 

data.append( 

(verts[::decimation], 'none', edgecolor, linewidth)) 

 

patches = [] 

for (path, facecolor, edgecolor, linewidth) in data: 

patches.append(Polygon( 

xy=path, facecolor=facecolor, 

edgecolor=edgecolor, 

linewidth=linewidth, 

alpha=alpha)) 

 

collection = PatchCollection( 

patches, zorder=zorder, transform=transform, match_original=True) 

 

axes.add_artist(collection) 

return collection 

 

 

def mts2amps(mts, projection, beachball_type, grid_resolution=200, mask=True, 

view='top'): 

 

n_balls = len(mts) 

nx = grid_resolution 

ny = grid_resolution 

 

x = num.linspace(-1., 1., nx) 

y = num.linspace(-1., 1., ny) 

 

vecs2 = num.zeros((nx * ny, 2), dtype=num.float64) 

vecs2[:, 0] = num.tile(x, ny) 

vecs2[:, 1] = num.repeat(y, nx) 

 

ii_ok = vecs2[:, 0]**2 + vecs2[:, 1]**2 <= 1.0 

amps = num_full(nx * ny, num.nan, dtype=num.float64) 

 

amps[ii_ok] = 0. 

for mt in mts: 

mt = deco_part(mt, beachball_type, view) 

 

ep, en, et, vp, vn, vt = mt.eigensystem() 

 

vecs3_ok = inverse_project(vecs2[ii_ok, :], projection) 

 

to_e = num.vstack((vn, vt, vp)) 

 

vecs_e = num.dot(to_e, vecs3_ok.T).T 

rtp = numpy_xyz2rtp(vecs_e) 

 

atheta, aphi = rtp[:, 1], rtp[:, 2] 

amps_ok = ep * num.cos(atheta)**2 + ( 

en * num.cos(aphi)**2 + et * num.sin(aphi)**2) * num.sin(atheta)**2 

 

if mask: 

amps_ok[amps_ok > 0] = 1. 

amps_ok[amps_ok < 0] = 0. 

 

amps[ii_ok] += amps_ok 

 

return num.reshape(amps, (ny, nx)) / n_balls, x, y 

 

 

def plot_fuzzy_beachball_mpl_pixmap( 

mts, axes, 

best_mt=None, 

beachball_type='deviatoric', 

position=(0., 0.), 

size=None, 

zorder=0, 

color_t='red', 

color_p='white', 

edgecolor='black', 

best_color='red', 

linewidth=2, 

alpha=1.0, 

projection='lambert', 

size_units='data', 

grid_resolution=200, 

method='imshow', 

view='top'): 

''' 

Plot fuzzy beachball from a list of given MomentTensors 

 

:param mts: list of 

:py:class:`pyrocko.moment_tensor.MomentTensor` object or an 

array or sequence which can be converted into an MT object 

:param best_mt: :py:class:`pyrocko.moment_tensor.MomentTensor` object or 

an array or sequence which can be converted into an MT object 

of most likely or minimum misfit solution to extra highlight 

:param best_color: mpl color for best MomentTensor edges, 

polygons are not plotted 

 

See plot_beachball_mpl for other arguments 

''' 

if size_units == 'points': 

raise BeachballError( 

'size_units="points" not supported in ' 

'plot_fuzzy_beachball_mpl_pixmap') 

 

transform, position, size = choose_transform( 

axes, size_units, position, size) 

 

amps, x, y = mts2amps( 

mts, 

grid_resolution=grid_resolution, 

projection=projection, 

beachball_type=beachball_type, 

mask=True, 

view=view) 

 

ncolors = 256 

cmap = LinearSegmentedColormap.from_list( 

'dummy', [color_p, color_t], N=ncolors) 

 

levels = num.linspace(0, 1., ncolors) 

if method == 'contourf': 

axes.contourf( 

position[0] + y * size, position[1] + x * size, amps.T, 

levels=levels, 

cmap=cmap, 

transform=transform, 

zorder=zorder, 

alpha=alpha) 

 

elif method == 'imshow': 

axes.imshow( 

amps.T, 

extent=( 

position[0] + y[0] * size, 

position[0] + y[-1] * size, 

position[1] - x[0] * size, 

position[1] - x[-1] * size), 

cmap=cmap, 

transform=transform, 

zorder=zorder-0.1, 

alpha=alpha) 

else: 

assert False, 'invalid `method` argument' 

 

# draw optimum edges 

if best_mt is not None: 

best_amps, bx, by = mts2amps( 

[best_mt], 

grid_resolution=grid_resolution, 

projection=projection, 

beachball_type=beachball_type, 

mask=False) 

 

axes.contour( 

position[0] + by * size, position[1] + bx * size, best_amps.T, 

levels=[0.], 

colors=[best_color], 

linewidths=linewidth, 

transform=transform, 

zorder=zorder, 

alpha=alpha) 

 

phi = num.linspace(0., 2 * PI, 361) 

x = num.cos(phi) 

y = num.sin(phi) 

axes.plot( 

position[0] + x * size, position[1] + y * size, 

linewidth=linewidth, 

color=edgecolor, 

transform=transform, 

zorder=zorder, 

alpha=alpha) 

 

 

def plot_beachball_mpl_construction( 

mt, axes, 

show='patches', 

beachball_type='deviatoric', 

view='top'): 

 

mt = deco_part(mt, beachball_type, view) 

eig = mt.eigensystem() 

 

for (group, patches, patches_lower, patches_upper, 

lines, lines_lower, lines_upper) in eig2gx(eig): 

 

if group == 'P': 

color = 'blue' 

lw = 1 

else: 

color = 'red' 

lw = 1 

 

if show == 'patches': 

for poly in patches_upper: 

px, py, pz = poly.T 

axes.plot(*extr(poly).T, color=color, lw=lw, alpha=0.5) 

 

if show == 'lines': 

for poly in lines_upper: 

px, py, pz = poly.T 

axes.plot(*extr(poly).T, color=color, lw=lw, alpha=0.5) 

 

 

def plot_beachball_mpl_pixmap( 

mt, axes, 

beachball_type='deviatoric', 

position=(0., 0.), 

size=None, 

zorder=0, 

color_t='red', 

color_p='white', 

edgecolor='black', 

linewidth=2, 

alpha=1.0, 

projection='lambert', 

size_units='data', 

view='top'): 

 

if size_units == 'points': 

raise BeachballError( 

'size_units="points" not supported in plot_beachball_mpl_pixmap') 

 

transform, position, size = choose_transform( 

axes, size_units, position, size) 

 

mt = deco_part(mt, beachball_type, view) 

 

ep, en, et, vp, vn, vt = mt.eigensystem() 

 

amps, x, y = mts2amps( 

[mt], projection, beachball_type, grid_resolution=200, mask=False) 

 

axes.contourf( 

position[0] + y * size, position[1] + x * size, amps.T, 

levels=[-num.inf, 0., num.inf], 

colors=[color_p, color_t], 

transform=transform, 

zorder=zorder, 

alpha=alpha) 

 

axes.contour( 

position[0] + y * size, position[1] + x * size, amps.T, 

levels=[0.], 

colors=[edgecolor], 

linewidths=linewidth, 

transform=transform, 

zorder=zorder, 

alpha=alpha) 

 

phi = num.linspace(0., 2 * PI, 361) 

x = num.cos(phi) 

y = num.sin(phi) 

axes.plot( 

position[0] + x * size, position[1] + y * size, 

linewidth=linewidth, 

color=edgecolor, 

transform=transform, 

zorder=zorder, 

alpha=alpha) 

 

 

if __name__ == '__main__': 

import sys 

import os 

import matplotlib.pyplot as plt 

from pyrocko import model 

 

args = sys.argv[1:] 

 

data = [] 

for iarg, arg in enumerate(args): 

 

if os.path.exists(arg): 

events = model.load_events(arg) 

for ev in events: 

if not ev.moment_tensor: 

logger.warn('no moment tensor given for event') 

continue 

 

data.append((ev.name, ev.moment_tensor)) 

else: 

vals = list(map(float, arg.split(','))) 

mt = mtm.as_mt(vals) 

data.append(('%i' % (iarg+1), mt)) 

 

n = len(data) 

 

ncols = 1 

while ncols**2 < n: 

ncols += 1 

 

nrows = ncols 

 

fig = plt.figure() 

axes = fig.add_subplot(1, 1, 1, aspect=1.) 

axes.axison = False 

axes.set_xlim(-0.05 - ncols, ncols + 0.05) 

axes.set_ylim(-0.05 - nrows, nrows + 0.05) 

 

for ibeach, (name, mt) in enumerate(data): 

irow = ibeach // ncols 

icol = ibeach % ncols 

plot_beachball_mpl( 

mt, axes, 

position=(icol*2-ncols+1, -irow*2+nrows-1), 

size_units='data') 

 

axes.annotate( 

name, 

xy=(icol*2-ncols+1, -irow*2+nrows-2), 

xycoords='data', 

xytext=(0, 0), 

textcoords='offset points', 

verticalalignment='center', 

horizontalalignment='center', 

rotation=0.) 

 

plt.show()