# http://pyrocko.org - GPLv3
#
# The Pyrocko Developers, 21st Century
# ---|P------/S----------~Lg----------
from __future__ import division
import struct
import logging
import numpy as num
try:
range = xrange
except NameError:
pass
logger = logging.getLogger('pyrocko.spit')
or_ = num.logical_or
and_ = num.logical_and
not_ = num.logical_not
all_ = num.all
any_ = num.any
class OutOfBounds(Exception):
pass
class Cell(object):
def __init__(self, tree, index, f=None):
self.tree = tree
self.index = index
self.depths = num.log2(index).astype(num.int)
self.bad = False
self.children = []
n = 2**self.depths
i = self.index - n
delta = (self.tree.xbounds[:, 1] - self.tree.xbounds[:, 0])/n
xmin = self.tree.xbounds[:, 0]
self.xbounds = self.tree.xbounds.copy()
self.xbounds[:, 0] = xmin + i * delta
self.xbounds[:, 1] = xmin + (i+1) * delta
self.a = self.xbounds[:, ::-1].copy()
self.b = self.a.copy()
self.b[:, 1] = self.xbounds[:, 1] - self.xbounds[:, 0]
self.b[:, 0] = - self.b[:, 1]
self.a[:, 0] += (self.b[:, 0] == 0.0)*0.5
self.a[:, 1] -= (self.b[:, 1] == 0.0)*0.5
self.b[:, 0] -= (self.b[:, 0] == 0.0)
self.b[:, 1] += (self.b[:, 1] == 0.0)
if f is None:
it = nditer_outer(tuple(self.xbounds) + (None,))
for vvv in it:
vvv[-1][...] = self.tree._f_cached(vvv[:-1])
self.f = it.operands[-1]
else:
self.f = f
def interpolate(self, x):
if self.children:
for cell in self.children:
if all_(and_(cell.xbounds[:, 0] <= x,
x <= cell.xbounds[:, 1])):
return cell.interpolate(x)
else:
if all_(num.isfinite(self.f)):
ws = (x[:, num.newaxis] - self.a)/self.b
wn = num.multiply.reduce(
num.array(num.ix_(*ws), dtype=num.object))
return num.sum(self.f * wn)
else:
return None
def interpolate_many(self, x):
if self.children:
result = num.empty(x.shape[0], dtype=num.float)
result[:] = None
for cell in self.children:
indices = num.where(
self.tree.ndim == num.sum(and_(
cell.xbounds[:, 0] <= x,
x <= cell.xbounds[:, 1]), axis=-1))[0]
if indices.size != 0:
result[indices] = cell.interpolate_many(x[indices])
return result
else:
if all_(num.isfinite(self.f)):
ws = (x[..., num.newaxis] - self.a)/self.b
npoints = ws.shape[0]
ndim = self.tree.ndim
ws_pimped = [ws[:, i, :] for i in range(ndim)]
for i in range(ndim):
s = [npoints] + [1] * ndim
s[1+i] = 2
ws_pimped[i].shape = tuple(s)
wn = ws_pimped[0]
for idim in range(1, ndim):
wn = wn * ws_pimped[idim]
result = wn * self.f
for i in range(ndim):
result = num.sum(result, axis=-1)
return result
else:
result = num.empty(x.shape[0], dtype=num.float)
result[:] = None
return result
def slice(self, x):
x = num.array(x, dtype=num.float)
x_mask = not_(num.isfinite(x))
x_ = x.copy()
x_[x_mask] = 0.0
return [
cell for cell in self.children if all_(or_(
x_mask,
and_(
cell.xbounds[:, 0] <= x_,
x_ <= cell.xbounds[:, 1])))]
def plot_rects(self, axes, x, dims):
if self.children:
for cell in self.slice(x):
cell.plot_rects(axes, x, dims)
else:
points = []
for iy, ix in ((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)):
points.append(
(self.xbounds[dims[0], iy], self.xbounds[dims[1], ix]))
points = num.transpose(points)
axes.plot(points[1], points[0], color=(0.1, 0.1, 0.0, 0.1))
def check_holes(self):
''' Check if :py:class:`Cell` or its' children contain NaNs'''
if self.children:
return any([child.check_holes() for child in self.children])
else:
return num.any(num.isnan(self.f))
def plot_2d(self, axes, x, dims):
idims = num.array(dims)
self.plot_rects(axes, x, dims)
coords = [
num.linspace(xb[0], xb[1], 1+int((xb[1]-xb[0])/d))
for (xb, d) in zip(self.xbounds[idims, :], self.tree.xtols[idims])]
npoints = coords[0].size * coords[1].size
g = num.meshgrid(*coords[::-1])[::-1]
points = num.empty((npoints, self.tree.ndim), dtype=num.float)
for idim in range(self.tree.ndim):
try:
idimout = dims.index(idim)
points[:, idim] = g[idimout].ravel()
except ValueError:
points[:, idim] = x[idim]
fi = num.empty((coords[0].size, coords[1].size), dtype=num.float)
fi_r = fi.ravel()
fi_r[...] = self.interpolate_many(points)
if num.any(num.isnan(fi)):
logger.warn('')
if any_(num.isfinite(fi)):
fi = num.ma.masked_invalid(fi)
axes.imshow(
fi, origin='lower',
extent=[coords[1].min(), coords[1].max(),
coords[0].min(), coords[0].max()],
interpolation='nearest',
aspect='auto',
cmap='RdYlBu')
def plot_1d(self, axes, x, dim):
xb = self.xbounds[dim]
d = self.tree.xtols[dim]
coords = num.linspace(xb[0], xb[1], 1+int((xb[1]-xb[0])/d))
npoints = coords.size
points = num.empty((npoints, self.tree.ndim), dtype=num.float)
for idim in range(self.tree.ndim):
if idim == dim:
points[:, idim] = coords
else:
points[:, idim] = x[idim]
fi = self.interpolate_many(points)
if any_(num.isfinite(fi)):
fi = num.ma.masked_invalid(fi)
axes.plot(coords, fi)
def __iter__(self):
yield self
for c in self.children:
for x in c:
yield x
def dump(self, file):
self.index.astype('<i4').tofile(file)
self.f.astype('<f8').tofile(file)
for c in self.children:
c.dump(file)
def bread(f, fmt):
s = f.read(struct.calcsize(fmt))
return struct.unpack(fmt, s)
class SPTree(object):
def __init__(self, f=None, ftol=None, xbounds=None, xtols=None,
filename=None, addargs=()):
'''Create n-dimensional space partitioning interpolator.
:param f: callable function f(x) where x is a vector of size n
:param ftol: target accuracy |f_interp(x) - f(x)| <= ftol
:param xbounds: bounds of x, shape (n, 2)
:param xtols: target coarsenesses in x, vector of size n
:param addargs: additional arguments to pass to f
'''
if filename is None:
assert all(v is not None for v in (f, ftol, xbounds, xtols))
self.f = f
self.ftol = float(ftol)
self.f_values = {}
self.ncells = 0
self.addargs = addargs
self.xbounds = num.asarray(xbounds, dtype=num.float)
assert self.xbounds.ndim == 2
assert self.xbounds.shape[1] == 2
self.ndim = self.xbounds.shape[0]
self.xtols = num.asarray(xtols, dtype=num.float)
assert self.xtols.ndim == 1 and self.xtols.size == self.ndim
self.maxdepths = num.ceil(num.log2(
num.maximum(
1.0,
(self.xbounds[:, 1] - self.xbounds[:, 0]) / self.xtols)
)).astype(num.int)
self.root = None
self.ones_int = num.ones(self.ndim, dtype=num.int)
cc = num.ix_(*[num.arange(3)]*self.ndim)
w = num.zeros([3]*self.ndim + [self.ndim, 2])
for i, c in enumerate(cc):
w[..., i, 0] = (2-c)*0.5
w[..., i, 1] = c*0.5
self.pointmaker = w
self.pointmaker_mask = num.sum(w[..., 0] == 0.5, axis=-1) != 0
self.pointmaker_masked = w[self.pointmaker_mask]
self.nothing_found_yet = True
self.root = Cell(self, self.ones_int)
self.ncells += 1
self.fraction_bad = 0.0
self.nbad = 0
self.cells_to_continue = []
for clipdepth in range(0, num.max(self.maxdepths)+1):
self.clipdepth = clipdepth
self.tested = 0
if self.clipdepth == 0:
self._fill(self.root)
else:
self._continue_fill()
self.status()
if not self.cells_to_continue:
break
else:
self._load(filename)
def status(self):
perc = (1.0-self.fraction_bad)*100
s = '%6.1f%%' % perc
if self.fraction_bad != 0.0 and s == ' 100.0%':
s = '~100.0%'
logger.info('at level %2i: %s covered, %6i cell%s' % (
self.clipdepth, s, self.ncells, ['s', ''][self.ncells == 1]))
def __iter__(self):
return iter(self.root)
def __len__(self):
return self.ncells
def dump(self, filename):
with open(filename, 'wb') as file:
version = 1
file.write(b'SPITREE ')
file.write(struct.pack(
'<QQQd', version, self.ndim, self.ncells, self.ftol))
self.xbounds.astype('<f8').tofile(file)
self.xtols.astype('<f8').tofile(file)
self.root.dump(file)
def _load(self, filename):
with open(filename, 'rb') as file:
marker, version, self.ndim, self.ncells, self.ftol = bread(
file, '<8sQQQd')
assert marker == b'SPITREE '
assert version == 1
self.xbounds = num.fromfile(
file, dtype='<f8', count=self.ndim*2).reshape(self.ndim, 2)
self.xtols = num.fromfile(
file, dtype='<f8', count=self.ndim)
path = []
for icell in range(self.ncells):
index = num.fromfile(
file, dtype='<i4', count=self.ndim)
f = num.fromfile(
file, dtype='<f8', count=2**self.ndim).reshape(
[2]*self.ndim)
cell = Cell(self, index, f)
if not path:
self.root = cell
path.append(cell)
else:
while not any_(path[-1].index == (cell.index >> 1)):
path.pop()
path[-1].children.append(cell)
path.append(cell)
def _f_cached(self, x):
return getset(
self.f_values, tuple(float(xx) for xx in x), self.f, self.addargs)
def interpolate(self, x):
x = num.asarray(x, dtype=num.float)
assert x.ndim == 1 and x.size == self.ndim
if not all_(and_(self.xbounds[:, 0] <= x, x <= self.xbounds[:, 1])):
raise OutOfBounds()
return self.root.interpolate(x)
def __call__(self, x):
return self.interpolate(x)
def interpolate_many(self, x):
return self.root.interpolate_many(x)
def _continue_fill(self):
cells_to_continue, self.cells_to_continue = self.cells_to_continue, []
for cell in cells_to_continue:
self._deepen_cell(cell)
def _fill(self, cell):
self.tested += 1
xtestpoints = num.sum(cell.xbounds * self.pointmaker_masked, axis=-1)
fis = cell.interpolate_many(xtestpoints)
fes = num.array(
[self._f_cached(x) for x in xtestpoints], dtype=num.float)
iffes = num.isfinite(fes)
iffis = num.isfinite(fis)
works = iffes == iffis
iif = num.logical_and(iffes, iffis)
works[iif] *= num.abs(fes[iif] - fis[iif]) < self.ftol
nundef = num.sum(not_(num.isfinite(fes))) + \
num.sum(not_(num.isfinite(cell.f)))
some_undef = 0 < nundef < (xtestpoints.shape[0] + cell.f.size)
if any_(works):
self.nothing_found_yet = False
if not all_(works) or some_undef or self.nothing_found_yet:
deepen = self.ones_int.copy()
if not some_undef:
works_full = num.ones([3]*self.ndim, dtype=num.bool)
works_full[self.pointmaker_mask] = works
for idim in range(self.ndim):
dimcorners = [slice(None, None, 2)] * self.ndim
dimcorners[idim] = 1
if all_(works_full[tuple(dimcorners)]):
deepen[idim] = 0
if not any_(deepen):
deepen = self.ones_int
deepen = num.where(
cell.depths + deepen > self.maxdepths, 0, deepen)
cell.deepen = deepen
if any_(deepen) and all_(cell.depths + deepen <= self.clipdepth):
self._deepen_cell(cell)
else:
if any_(deepen):
self.cells_to_continue.append(cell)
cell.bad = True
self.fraction_bad += num.product(1.0/2**cell.depths)
self.nbad += 1
def _deepen_cell(self, cell):
if cell.bad:
self.fraction_bad -= num.product(1.0/2**cell.depths)
self.nbad -= 1
cell.bad = False
for iadd in num.ndindex(*(cell.deepen+1)):
index_child = (cell.index << cell.deepen) + iadd
child = Cell(self, index_child)
self.ncells += 1
cell.children.append(child)
self._fill(child)
def check_holes(self):
'''Check for NaNs in :py:class:`SPTree`'''
return self.root.check_holes()
def plot_2d(self, axes=None, x=None, dims=None):
assert self.ndim >= 2
if x is None:
x = num.zeros(self.ndim)
x[-2:] = None
x = num.asarray(x, dtype=num.float)
if dims is None:
dims = [i for (i, v) in enumerate(x) if not num.isfinite(v)]
assert len(dims) == 2
plt = None
if axes is None:
from matplotlib import pyplot as plt
axes = plt.gca()
self.root.plot_2d(axes, x, dims)
axes.set_xlabel('Dim %i' % dims[1])
axes.set_ylabel('Dim %i' % dims[0])
if plt:
plt.show()
def plot_1d(self, axes=None, x=None, dims=None):
if x is None:
x = num.zeros(self.ndim)
x[-1:] = None
x = num.asarray(x, dtype=num.float)
if dims is None:
dims = [i for (i, v) in enumerate(x) if not num.isfinite(v)]
assert len(dims) == 1
plt = None
if axes is None:
from matplotlib import pyplot as plt
axes = plt.gca()
self.root.plot_1d(axes, x, dims[0])
axes.set_xlabel('Dim %i' % dims[0])
if plt:
plt.show()
def getset(d, k, f, addargs):
try:
return d[k]
except KeyError:
v = d[k] = f(k, *addargs)
return v
def nditer_outer(x):
add = []
if x[-1] is None:
x_ = x[:-1]
add = [None]
else:
x_ = x
return num.nditer(
x,
op_axes=(num.identity(len(x_), dtype=num.int)-1).tolist() + add)
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO)
def f(x):
x0 = num.array([0.5, 0.5, 0.5])
r = 0.5
if num.sqrt(num.sum((x-x0)**2)) < r:
return x[2]**4 + x[1]
return None
tree = SPTree(f, 0.01, [[0., 1.], [0., 1.], [0., 1.]], [0.025, 0.05, 0.1])
import tempfile
import os
fid, fn = tempfile.mkstemp()
tree.dump(fn)
tree = SPTree(filename=fn)
os.unlink(fn)
from matplotlib import pyplot as plt
v = 0.5
axes = plt.subplot(2, 2, 1)
tree.plot_2d(axes, x=(v, None, None))
axes = plt.subplot(2, 2, 2)
tree.plot_2d(axes, x=(None, v, None))
axes = plt.subplot(2, 2, 3)
tree.plot_2d(axes, x=(None, None, v))
axes = plt.subplot(2, 2, 4)
tree.plot_1d(axes, x=(v, v, None))
plt.show()
|