Geodesic functions¶
Pyrocko’s orthodrome
module offers geodesic functions to solve a variety of common geodetic problems, like distance and angle calculation on a spheroid.
Distance between points on earth¶
In this example we use distance_accurate50m()
and pyrocko.model
to calculate the distance between two points on earth.
Download orthodrome_example1.py
from pyrocko import orthodrome, model
e = model.Event(lat=10., lon=20.)
s = model.Station(lat=15., lon=120.)
# one possibility:
d = orthodrome.distance_accurate50m(e, s)
print('Distance between e and s is %g km' % (d/1000.))
# another possibility:
s.set_event_relative_data(e)
print('Distance between e and s is %g km' % (s.dist_m/1000.))
This can also be serialised for multiple coordinates stored in numpy.ndarray
through distance_accurate50m_numpy()
.
Download orthodrome_example2.py
import numpy as num
from pyrocko import orthodrome
ncoords = 1000
# First set of coordinates
lats_a = num.random.uniform(-180., 180., ncoords)
lons_a = num.random.uniform(-90., 90., ncoords)
# Second set of coordinates
lats_b = num.random.uniform(-180., 180., ncoords)
lons_b = num.random.uniform(-90., 90., ncoords)
orthodrome.distance_accurate50m_numpy(lats_a, lons_a, lats_b, lons_b)
Azimuth and backazimuth¶
Calculation of azimuths and backazimuths between two points on a spherical earth.
Download orthodrome_example3.py
from pyrocko import orthodrome
# For a single point
orthodrome.azibazi(49.1, 20.5, 45.4, 22.3)
# >>> (161.05973376168285, -17.617746351508035) # Azimuth and backazimuth
import numpy as num # noqa
ncoords = 1000
# First set of coordinates
lats_a = num.random.uniform(-180., 180., ncoords)
lons_a = num.random.uniform(-90., 90., ncoords)
# Second set of coordinates
lats_b = num.random.uniform(-180., 180., ncoords)
lons_b = num.random.uniform(-90., 90., ncoords)
orthodrome.azibazi_numpy(lats_a, lons_a, lats_b, lons_b)
Conversion to carthesian coordinates¶
Given two sets of coordinates, latlon_to_ne()
returns the distance in meters in north/east direction.
Download orthodrome_example4.py
from pyrocko import orthodrome
# option 1, coordinates as floats
north_m, east_m = orthodrome.latlon_to_ne(
10.3, # origin latitude
12.4, # origin longitude
10.5, # target latitude
12.6) # target longitude
print(north_m, east_m)
# >>> 22199.7843582 21821.3511789
# option 2, coordinates from instances with 'lon' and 'lat' attributes
from pyrocko.gf import seismosizer # noqa
source = seismosizer.DCSource(lat=10.3, lon=12.4)
target = seismosizer.Target(lat=10.5, lon=12.6)
north_m, east_m = orthodrome.latlon_to_ne(source, target)
print(north_m, east_m)
# >>> 22199.7843582 21821.3511789
Relative carthesian coordinates to latitude and longitude¶
Download orthodrome_example5.py
from pyrocko import orthodrome
# arguments: origin lat, origin lon, north [m], east [m]
lat, lon = orthodrome.ne_to_latlon(10.3, 12.4, 22200., 21821.)
print('latitude: %s, longitude: %s ' % (lat, lon))
# >>> latitude: 10.4995878932, longitude: 12.5995823469