import numpy as num
import math
import logging
from pyrocko import gf, util, moment_tensor as mtm
from pyrocko.guts import String, Float, Dict, StringChoice, Int
from grond.meta import Forbidden, expand_template, Parameter, \
has_get_plot_classes
from ..base import Problem, ProblemConfig
guts_prefix = 'grond'
logger = logging.getLogger('grond.problems.cmt.problem')
km = 1e3
as_km = dict(scale_factor=km, scale_unit='km')
class MTType(StringChoice):
choices = ['full', 'deviatoric', 'dc']
class STFType(StringChoice):
choices = ['HalfSinusoidSTF', 'ResonatorSTF']
cls = {
'HalfSinusoidSTF': gf.HalfSinusoidSTF,
'ResonatorSTF': gf.ResonatorSTF}
@classmethod
def base_stf(cls, name):
return cls.cls[name]()
class SDROrderLike(StringChoice):
choices = ['mean_source', 'base_source']
[docs]class CMTProblemConfig(ProblemConfig):
ranges = Dict.T(String.T(), gf.Range.T())
distance_min = Float.T(default=0.0)
mt_type = MTType.T(default='full')
stf_type = STFType.T(default='HalfSinusoidSTF')
nthreads = Int.T(default=1)
[docs] def get_problem(self, event, target_groups, targets):
if event.depth is None:
event.depth = 0.
base_source = gf.MTSource.from_pyrocko_event(event)
stf = STFType.base_stf(self.stf_type)
stf.duration = event.duration or 0.0
base_source.stf = stf
subs = dict(
event_name=event.name,
event_time=util.time_to_str(event.time))
problem = CMTProblem(
name=expand_template(self.name_template, subs),
base_source=base_source,
target_groups=target_groups,
targets=targets,
ranges=self.ranges,
distance_min=self.distance_min,
mt_type=self.mt_type,
stf_type=self.stf_type,
norm_exponent=self.norm_exponent,
nthreads=self.nthreads)
return problem
[docs]@has_get_plot_classes
class CMTProblem(Problem):
problem_parameters = [
Parameter('time', 's', label='Time'),
Parameter('north_shift', 'm', label='Northing', **as_km),
Parameter('east_shift', 'm', label='Easting', **as_km),
Parameter('depth', 'm', label='Depth', **as_km),
Parameter('magnitude', label='Magnitude'),
Parameter('rmnn', label='$m_{nn} / M_0$'),
Parameter('rmee', label='$m_{ee} / M_0$'),
Parameter('rmdd', label='$m_{dd} / M_0$'),
Parameter('rmne', label='$m_{ne} / M_0$'),
Parameter('rmnd', label='$m_{nd} / M_0$'),
Parameter('rmed', label='$m_{ed} / M_0$')]
problem_parameters_stf = {
'HalfSinusoidSTF': [
Parameter('duration', 's', label='Duration')],
'ResonatorSTF': [
Parameter('duration', 's', label='Duration'),
Parameter('frequency', 'Hz', label='Frequency')]}
dependants = [
Parameter('strike1', u'\u00b0', label='Strike 1', is_angle=True),
Parameter('dip1', u'\u00b0', label='Dip 1', is_angle=True),
Parameter('rake1', u'\u00b0', label='Rake 1', is_angle=True),
Parameter('strike2', u'\u00b0', label='Strike 2', is_angle=True),
Parameter('dip2', u'\u00b0', label='Dip 2', is_angle=True),
Parameter('rake2', u'\u00b0', label='Rake 2', is_angle=True),
Parameter('rel_moment_iso', label='$M_{0}^{ISO}/M_{0}$'),
Parameter('rel_moment_clvd', label='$M_{0}^{CLVD}/M_{0}$')]
distance_min = Float.T(default=0.0)
mt_type = MTType.T(default='full')
stf_type = STFType.T(default='HalfSinusoidSTF')
sdr_order_like = SDROrderLike.T(default='mean_source')
def __init__(self, **kwargs):
Problem.__init__(self, **kwargs)
self.deps_cache = {}
self.problem_parameters = self.problem_parameters \
+ self.problem_parameters_stf[self.stf_type]
self._base_stf = STFType.base_stf(self.stf_type)
def get_stf(self, d):
d_stf = {}
for p in self.problem_parameters_stf[self.stf_type]:
d_stf[p.name] = float(d[p.name])
return self._base_stf.clone(**d_stf)
def get_source(self, x):
d = self.get_parameter_dict(x)
rm6 = num.array([d.rmnn, d.rmee, d.rmdd, d.rmne, d.rmnd, d.rmed],
dtype=num.float)
m0 = mtm.magnitude_to_moment(d.magnitude)
m6 = rm6 * m0
p = {}
for k in self.base_source.keys():
if k in d:
p[k] = float(
self.ranges[k].make_relative(self.base_source[k], d[k]))
source = self.base_source.clone(m6=m6, stf=self.get_stf(d), **p)
return source
def make_dependant(self, xs, pname):
cache = self.deps_cache
if xs.ndim == 1:
return self.make_dependant(xs[num.newaxis, :], pname)[0]
if pname not in self.dependant_names:
raise KeyError(pname)
if self.sdr_order_like == 'base_source':
mt = self.base_source.pyrocko_moment_tensor()
sdrs_ref = mt.both_strike_dip_rake()
elif self.sdr_order_like == 'mean_source':
x_mean = num.mean(xs, axis=0)
source_mean = self.get_source(x_mean)
mt = source_mean.pyrocko_moment_tensor()
sdrs_ref = mt.both_strike_dip_rake()
y = num.zeros(xs.shape[0])
for i, x in enumerate(xs):
k = tuple(x.tolist() + sdrs_ref)
if k not in cache:
source = self.get_source(x)
mt = source.pyrocko_moment_tensor()
res = mt.standard_decomposition()
sdrs = mt.both_strike_dip_rake()
sdrs = mtm.order_like(sdrs, sdrs_ref)
cache[k] = mt, res, sdrs
mt, res, sdrs = cache[k]
if pname == 'rel_moment_iso':
ratio_iso, m_iso = res[0][1:3]
y[i] = ratio_iso * num.sign(m_iso[0, 0])
elif pname == 'rel_moment_clvd':
ratio_clvd, m_clvd = res[2][1:3]
evals, evecs = mtm.eigh_check(m_clvd)
ii = num.argmax(num.abs(evals))
y[i] = ratio_clvd * num.sign(evals[ii])
else:
isdr = {'strike': 0, 'dip': 1, 'rake': 2}[pname[:-1]]
y[i] = sdrs[int(pname[-1])-1][isdr]
return y
def pack_stf(self, stf):
return [
stf[p.name] for p in self.problem_parameters_stf[self.stf_type]]
def pack(self, source):
m6 = source.m6
mt = source.pyrocko_moment_tensor()
rm6 = m6 / mt.scalar_moment()
x = num.array([
source.time - self.base_source.time,
source.north_shift,
source.east_shift,
source.depth,
mt.moment_magnitude(),
] + rm6.tolist() + self.pack_stf(source.stf), dtype=num.float)
return x
def random_uniform(self, xbounds, rstate, fixed_magnitude=None):
x = num.zeros(self.nparameters)
for i in range(self.nparameters):
x[i] = rstate.uniform(xbounds[i, 0], xbounds[i, 1])
if fixed_magnitude is not None:
x[4] = fixed_magnitude
x[5:11] = mtm.random_m6(x=rstate.random_sample(6))
return x.tolist()
def preconstrain(self, x):
d = self.get_parameter_dict(x)
m6 = num.array([d.rmnn, d.rmee, d.rmdd, d.rmne, d.rmnd, d.rmed],
dtype=num.float)
m9 = mtm.symmat6(*m6)
if self.mt_type == 'deviatoric':
trace_m = num.trace(m9)
m_iso = num.diag([trace_m / 3., trace_m / 3., trace_m / 3.])
m9 -= m_iso
elif self.mt_type == 'dc':
mt = mtm.MomentTensor(m=m9)
m9 = mt.standard_decomposition()[1][2]
m0_unscaled = math.sqrt(num.sum(m9.A**2)) / math.sqrt(2.)
m9 /= m0_unscaled
m6 = mtm.to6(m9)
d.rmnn, d.rmee, d.rmdd, d.rmne, d.rmnd, d.rmed = m6
x = self.get_parameter_array(d)
source = self.get_source(x)
for t in self.waveform_targets:
if (self.distance_min > num.asarray(t.distance_to(source))).any():
raise Forbidden()
return x
def get_dependant_bounds(self):
out = [
(0., 360.),
(0., 90.),
(-180., 180.),
(0., 360.),
(0., 90.),
(-180., 180.),
(-1., 1.),
(-1., 1.)]
return out
@classmethod
def get_plot_classes(cls):
from .. import plot
plots = super(CMTProblem, cls).get_plot_classes()
plots.extend([plot.HudsonPlot, plot.MTDecompositionPlot,
plot.MTLocationPlot, plot.MTFuzzyPlot])
return plots
__all__ = '''
CMTProblem
CMTProblemConfig
'''.split()