Source code for pyrocko.gf.meta

# http://pyrocko.org - GPLv3
#
# The Pyrocko Developers, 21st Century
# ---|P------/S----------~Lg----------
from __future__ import absolute_import, division

import math
import re
import fnmatch
import logging

import numpy as num
from scipy.interpolate import interp1d

from pyrocko.guts import (Object, SObject, String, StringChoice,
                          StringPattern, Unicode, Float, Bool, Int, TBase,
                          List, ValidationError, Timestamp, Tuple, Dict)
from pyrocko.guts import dump, load  # noqa
from pyrocko.guts_array import literal, Array
from pyrocko.model import Location, gnss

from pyrocko import cake, orthodrome, spit, moment_tensor, trace
from pyrocko.util import num_full

from .error import StoreError

try:
    new_str = unicode
except NameError:
    new_str = str

guts_prefix = 'pf'

d2r = math.pi / 180.
r2d = 1.0 / d2r
km = 1000.
vicinity_eps = 1e-5

logger = logging.getLogger('pyrocko.gf.meta')


def fmt_choices(cls):
    return 'choices: %s' % ', '.join(
        "``'%s'``" % choice for choice in cls.choices)


[docs]class InterpolationMethod(StringChoice): choices = ['nearest_neighbor', 'multilinear']
[docs]class SeismosizerTrace(Object): codes = Tuple.T( 4, String.T(), default=('', 'STA', '', 'Z'), help='network, station, location and channel codes') data = Array.T( shape=(None,), dtype=num.float32, serialize_as='base64', serialize_dtype=num.dtype('<f4'), help='numpy array with data samples') deltat = Float.T( default=1.0, help='sampling interval [s]') tmin = Timestamp.T( default=0.0, help='time of first sample as a system timestamp [s]') def pyrocko_trace(self): c = self.codes return trace.Trace(c[0], c[1], c[2], c[3], ydata=self.data, deltat=self.deltat, tmin=self.tmin) @classmethod def from_pyrocko_trace(cls, tr, **kwargs): d = dict( codes=tr.nslc_id, tmin=tr.tmin, deltat=tr.deltat, data=num.asarray(tr.get_ydata(), dtype=num.float32)) d.update(kwargs) return cls(**d)
[docs]class SeismosizerResult(Object): n_records_stacked = Int.T(optional=True, default=1) t_stack = Float.T(optional=True, default=0.)
[docs]class Result(SeismosizerResult): trace = SeismosizerTrace.T(optional=True) n_shared_stacking = Int.T(optional=True, default=1) t_optimize = Float.T(optional=True, default=0.)
[docs]class StaticResult(SeismosizerResult): result = Dict.T( String.T(), Array.T(shape=(None,), dtype=num.float, serialize_as='base64'))
class GNSSCampaignResult(StaticResult): campaign = gnss.GNSSCampaign.T( optional=True) class SatelliteResult(StaticResult): theta = Array.T( optional=True, shape=(None,), dtype=num.float, serialize_as='base64') phi = Array.T( optional=True, shape=(None,), dtype=num.float, serialize_as='base64') class KiteSceneResult(SatelliteResult): shape = Tuple.T() def get_scene(self, component='displacement.los'): try: from kite import Scene except ImportError: raise ImportError('Kite not installed') def reshape(arr): return arr.reshape(self.shape) displacement = self.result[component] displacement, theta, phi = map( reshape, (displacement, self.theta, self.phi)) sc = Scene( displacement=displacement, theta=theta, phi=phi, config=self.config) return sc class ComponentSchemeDescription(Object): name = String.T() source_terms = List.T(String.T()) ncomponents = Int.T() default_stored_quantity = String.T(optional=True) provided_components = List.T(String.T()) component_scheme_descriptions = [ ComponentSchemeDescription( name='elastic2', source_terms=['m0'], ncomponents=2, default_stored_quantity='displacement', provided_components=[ 'n', 'e', 'd']), ComponentSchemeDescription( name='elastic8', source_terms=['mnn', 'mee', 'mdd', 'mne', 'mnd', 'med'], ncomponents=8, default_stored_quantity='displacement', provided_components=[ 'n', 'e', 'd']), ComponentSchemeDescription( name='elastic10', source_terms=['mnn', 'mee', 'mdd', 'mne', 'mnd', 'med'], ncomponents=10, default_stored_quantity='displacement', provided_components=[ 'n', 'e', 'd']), ComponentSchemeDescription( name='elastic18', source_terms=['mnn', 'mee', 'mdd', 'mne', 'mnd', 'med'], ncomponents=18, default_stored_quantity='displacement', provided_components=[ 'n', 'e', 'd']), ComponentSchemeDescription( name='elastic5', source_terms=['fn', 'fe', 'fd'], ncomponents=5, default_stored_quantity='displacement', provided_components=[ 'n', 'e', 'd']), ComponentSchemeDescription( name='poroelastic10', source_terms=['pore_pressure'], ncomponents=10, default_stored_quantity=None, provided_components=[ 'displacement.n', 'displacement.e', 'displacement.d', 'vertical_tilt.n', 'vertical_tilt.e', 'pore_pressure', 'darcy_velocity.n', 'darcy_velocity.e', 'darcy_velocity.d'])] # new names? # 'mt_to_displacement_1d' # 'mt_to_displacement_1d_ff_only' # 'mt_to_gravity_1d' # 'mt_to_stress_1d' # 'explosion_to_displacement_1d' # 'sf_to_displacement_1d' # 'mt_to_displacement_3d' # 'mt_to_gravity_3d' # 'mt_to_stress_3d' # 'pore_pressure_to_displacement_1d' # 'pore_pressure_to_vertical_tilt_1d' # 'pore_pressure_to_pore_pressure_1d' # 'pore_pressure_to_darcy_velocity_1d' component_schemes = [c.name for c in component_scheme_descriptions] component_scheme_to_description = dict( (c.name, c) for c in component_scheme_descriptions)
[docs]class ComponentScheme(StringChoice): ''' Different Green's Function component schemes are available: ================= ========================================================= Name Description ================= ========================================================= ``elastic10`` Elastodynamic for :py:class:`~pyrocko.gf.meta.ConfigTypeA` and :py:class:`~pyrocko.gf.meta.ConfigTypeB` stores, MT sources only ``elastic8`` Elastodynamic for far-field only :py:class:`~pyrocko.gf.meta.ConfigTypeA` and :py:class:`~pyrocko.gf.meta.ConfigTypeB` stores, MT sources only ``elastic2`` Elastodynamic for :py:class:`~pyrocko.gf.meta.ConfigTypeA` and :py:class:`~pyrocko.gf.meta.ConfigTypeB` stores, purely isotropic sources only ``elastic5`` Elastodynamic for :py:class:`~pyrocko.gf.meta.ConfigTypeA` and :py:class:`~pyrocko.gf.meta.ConfigTypeB` stores, SF sources only ``elastic18`` Elastodynamic for :py:class:`~pyrocko.gf.meta.ConfigTypeC` stores, MT sources only ``poroelastic10`` Poroelastic for :py:class:`~pyrocko.gf.meta.ConfigTypeA` and :py:class:`~pyrocko.gf.meta.ConfigTypeB` stores ================= ========================================================= ''' choices = component_schemes
[docs]class Earthmodel1D(Object): dummy_for = cake.LayeredModel class __T(TBase): def regularize_extra(self, val): if isinstance(val, str): val = cake.LayeredModel.from_scanlines( cake.read_nd_model_str(val)) return val def to_save(self, val): return literal(cake.write_nd_model_str(val))
[docs]class StringID(StringPattern): pattern = r'^[A-Za-z][A-Za-z0-9._]{0,64}$'
[docs]class ScopeType(StringChoice): choices = [ 'global', 'regional', 'local', ]
class WaveType(StringChoice): choices = [ 'full waveform', 'bodywave', 'P wave', 'S wave', 'surface wave', ]
[docs]class NearfieldTermsType(StringChoice): choices = [ 'complete', 'incomplete', 'missing', ]
[docs]class QuantityType(StringChoice): choices = [ 'displacement', 'rotation', 'velocity', 'acceleration', 'pressure', 'tilt', 'pore_pressure', 'darcy_velocity', 'vertical_tilt']
[docs]class Reference(Object): id = StringID.T() type = String.T() title = Unicode.T() journal = Unicode.T(optional=True) volume = Unicode.T(optional=True) number = Unicode.T(optional=True) pages = Unicode.T(optional=True) year = String.T() note = Unicode.T(optional=True) issn = String.T(optional=True) doi = String.T(optional=True) url = String.T(optional=True) eprint = String.T(optional=True) authors = List.T(Unicode.T()) publisher = Unicode.T(optional=True) keywords = Unicode.T(optional=True) note = Unicode.T(optional=True) abstract = Unicode.T(optional=True) @classmethod def from_bibtex(cls, filename=None, stream=None): from pybtex.database.input import bibtex parser = bibtex.Parser() if filename is not None: bib_data = parser.parse_file(filename) elif stream is not None: bib_data = parser.parse_stream(stream) references = [] for id_, entry in bib_data.entries.items(): d = {} avail = entry.fields.keys() for prop in cls.T.properties: if prop.name == 'authors' or prop.name not in avail: continue d[prop.name] = entry.fields[prop.name] if 'author' in entry.persons: d['authors'] = [] for person in entry.persons['author']: d['authors'].append(new_str(person)) c = Reference(id=id_, type=entry.type, **d) references.append(c) return references
_fpat = r'[+-]?(\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?' _spat = StringID.pattern[1:-1] _cake_pat = cake.PhaseDef.allowed_characters_pattern _iaspei_pat = cake.PhaseDef.allowed_characters_pattern_classic _ppat = r'(' \ r'cake:' + _cake_pat + \ r'|iaspei:' + _iaspei_pat + \ r'|vel_surface:' + _fpat + \ r'|vel:' + _fpat + \ r'|stored:' + _spat + \ r')' timing_regex_old = re.compile( r'^((first|last)?\((' + _spat + r'(\|' + _spat + r')*)\)|(' + _spat + r'))?(' + _fpat + ')?$') timing_regex = re.compile( r'^((first|last)?\{(' + _ppat + r'(\|' + _ppat + r')*)\}|(' + _ppat + r'))?(' + _fpat + '(S|%)?)?$')
[docs]class PhaseSelect(StringChoice): choices = ['', 'first', 'last']
[docs]class InvalidTimingSpecification(ValidationError): pass
[docs]class Timing(SObject): ''' Definition of a time instant relative to one or more named phase arrivals Instances of this class can be used e.g. in cutting and tapering operations. They can hold an absolute time or an offset to a named phase arrival or group of such arrivals. Timings can be instantiated from a simple string defintion i.e. with ``Timing(str)`` where ``str`` is something like ``'SELECT{PHASE_DEFS}[+-]OFFSET[S|%]'`` where ``'SELECT'`` is ``'first'``, ``'last'`` or empty, ``'PHASE_DEFS'`` is a ``'|'``-separated list of phase definitions, and ``'OFFSET'`` is the time offset in seconds. If a ``'%'`` is appended, it is interpreted as percent. If the an ``'S'`` is appended to ``'OFFSET'``, it is interpreted as a surface slowness in [s/km]. Phase definitions can be specified in either of the following ways: * ``'stored:PHASE_ID'`` - retrieves value from stored travel time table * ``'cake:CAKE_PHASE_DEF'`` - evaluates first arrival of phase with cake (see :py:class:`pyrocko.cake.PhaseDef`) * ``'vel_surface:VELOCITY'`` - arrival according to surface distance / velocity [km/s] * ``'vel:VELOCITY'`` - arrival according to 3D-distance / velocity [km/s] **Examples:** * ``'100'`` : absolute time; 100 s * ``'{stored:P}-100'`` : 100 s before arrival of P phase according to stored travel time table named ``'P'`` * ``'{stored:P}-5.1S'`` : 10% before arrival of P phase according to stored travel time table named ``'P'`` * ``'{stored:P}-10%'`` : 10% before arrival of P phase according to stored travel time table named ``'P'`` * ``'{stored:A|stored:B}'`` : time instant of phase arrival A, or B if A is undefined for a given geometry * ``'first{stored:A|stored:B}'`` : as above, but the earlier arrival of A and B is chosen, if both phases are defined for a given geometry * ``'last{stored:A|stored:B}'`` : as above but the later arrival is chosen * ``'first{stored:A|stored:B|stored:C}-100'`` : 100 s before first out of arrivals A, B, and C ''' def __init__(self, s=None, **kwargs): if s is not None: offset_is = None s = re.sub(r'\s+', '', s) try: offset = float(s.rstrip('S')) if s.endswith('S'): offset_is = 'slowness' phase_defs = [] select = '' except ValueError: matched = False m = timing_regex.match(s) if m: if m.group(3): phase_defs = m.group(3).split('|') elif m.group(19): phase_defs = [m.group(19)] else: phase_defs = [] select = m.group(2) or '' offset = 0.0 soff = m.group(27) if soff: offset = float(soff.rstrip('S%')) if soff.endswith('S'): offset_is = 'slowness' elif soff.endswith('%'): offset_is = 'percent' matched = True else: m = timing_regex_old.match(s) if m: if m.group(3): phase_defs = m.group(3).split('|') elif m.group(5): phase_defs = [m.group(5)] else: phase_defs = [] select = m.group(2) or '' offset = 0.0 if m.group(6): offset = float(m.group(6)) phase_defs = [ 'stored:' + phase_def for phase_def in phase_defs] matched = True if not matched: raise InvalidTimingSpecification(s) kwargs = dict( phase_defs=phase_defs, select=select, offset=offset, offset_is=offset_is) SObject.__init__(self, **kwargs) def __str__(self): s = [] if self.phase_defs: sphases = '|'.join(self.phase_defs) # if len(self.phase_defs) > 1 or self.select: sphases = '{%s}' % sphases if self.select: sphases = self.select + sphases s.append(sphases) if self.offset != 0.0 or not self.phase_defs: s.append('%+g' % self.offset) if self.offset_is == 'slowness': s.append('S') elif self.offset_is == 'percent': s.append('%') return ''.join(s) def evaluate(self, get_phase, args): try: if self.offset_is == 'slowness' and self.offset != 0.0: phase_offset = get_phase( 'vel_surface:%g' % (1.0/self.offset)) offset = phase_offset(args) else: offset = self.offset if self.phase_defs: phases = [ get_phase(phase_def) for phase_def in self.phase_defs] times = [phase(args) for phase in phases] if self.offset_is == 'percent': times = [t*(1.+offset/100.) for t in times if t is not None] else: times = [t+offset for t in times if t is not None] if not times: return None elif self.select == 'first': return min(times) elif self.select == 'last': return max(times) else: return times[0] else: return offset except spit.OutOfBounds: raise OutOfBounds(args) phase_defs = List.T(String.T()) offset = Float.T(default=0.0) offset_is = String.T(optional=True) select = PhaseSelect.T( default='', help=('Can be either ``\'%s\'``, ``\'%s\'``, or ``\'%s\'``. ' % tuple(PhaseSelect.choices)))
def mkdefs(s): defs = [] for x in s.split(','): try: defs.append(float(x)) except ValueError: if x.startswith('!'): defs.extend(cake.PhaseDef.classic(x[1:])) else: defs.append(cake.PhaseDef(x)) return defs
[docs]class TPDef(Object): ''' Maps an arrival phase identifier to an arrival phase definition. ''' id = StringID.T( help='name used to identify the phase') definition = String.T( help='definition of the phase in either cake syntax as defined in ' ':py:class:`pyrocko.cake.PhaseDef`, or, if prepended with an ' '``!``, as a *classic phase name*, or, if it is a simple ' 'number, as a constant horizontal velocity.') @property def phases(self): return [x for x in mkdefs(self.definition) if isinstance(x, cake.PhaseDef)] @property def horizontal_velocities(self): return [x for x in mkdefs(self.definition) if isinstance(x, float)]
[docs]class OutOfBounds(Exception): def __init__(self, values=None, reason=None): Exception.__init__(self) self.values = values self.reason = reason self.context = None def __str__(self): scontext = '' if self.context: scontext = '\n%s' % str(self.context) if self.reason: scontext += '\n%s' % self.reason if self.values: return 'out of bounds: (%s)%s' % ( ','.join('%g' % x for x in self.values), scontext) else: return 'out of bounds%s' % scontext
class MultiLocation(Object): lats = Array.T( optional=True, shape=(None,), dtype=num.float, help='Latitudes of targets.') lons = Array.T( optional=True, shape=(None,), dtype=num.float, help='Longitude of targets.') north_shifts = Array.T( optional=True, shape=(None,), dtype=num.float, help='North shifts of targets.') east_shifts = Array.T( optional=True, shape=(None,), dtype=num.float, help='East shifts of targets.') elevation = Array.T( optional=True, shape=(None,), dtype=num.float, help='Elevations of targets.') def __init__(self, *args, **kwargs): self._coords5 = None Object.__init__(self, *args, **kwargs) @property def coords5(self): if self._coords5 is not None: return self._coords5 props = [self.lats, self.lons, self.north_shifts, self.east_shifts, self.elevation] sizes = [p.size for p in props if p is not None] if not sizes: raise AttributeError('Empty StaticTarget') if num.unique(sizes).size != 1: raise AttributeError('Inconsistent coordinate sizes.') self._coords5 = num.zeros((sizes[0], 5)) for idx, p in enumerate(props): if p is not None: self._coords5[:, idx] = p.flatten() return self._coords5 @property def ncoords(self): if self.coords5.shape[0] is None: return 0 return int(self.coords5.shape[0]) def get_latlon(self): ''' Get all coordinates as lat lon :returns: Coordinates in Latitude, Longitude :rtype: :class:`numpy.ndarray`, (N, 2) ''' latlons = num.empty((self.ncoords, 2)) for i in range(self.ncoords): latlons[i, :] = orthodrome.ne_to_latlon(*self.coords5[i, :4]) return latlons def get_corner_coords(self): '''Returns the corner coordinates of the multi location object :returns: In LatLon: lower left, upper left, upper right, lower right :rtype: tuple ''' latlon = self.get_latlon() ll = (latlon[:, 0].min(), latlon[:, 1].min()) ur = (latlon[:, 0].max(), latlon[:, 1].max()) return (ll, (ll[0], ur[1]), ur, (ur[0], ll[1]))
[docs]class Receiver(Location): codes = Tuple.T( 3, String.T(), optional=True, help='network, station, and location codes') def pyrocko_station(self): from pyrocko import model lat, lon = self.effective_latlon return model.Station( network=self.codes[0], station=self.codes[1], location=self.codes[2], lat=lat, lon=lon, depth=self.depth)
def g(x, d): if x is None: return d else: return x
[docs]class UnavailableScheme(Exception): pass
class InvalidNComponents(Exception): pass class DiscretizedSource(Object): '''Base class for discretized sources. To compute synthetic seismograms, the parameterized source models (see of :py:class:`~pyrocko.gf.seismosizer.Source` derived classes) are first discretized into a number of point sources. These spacio-temporal point source distributions are represented by subclasses of the :py:class:`DiscretizedSource`. For elastodynamic problems there is the :py:class:`DiscretizedMTSource` for moment tensor point source distributions and the :py:class:`DiscretizedExplosionSource` for pure explosion/implosion type source distributions. The geometry calculations are implemented in the base class. How Green's function components have to be weighted and sumed is defined in the derived classes. Like in the :py:class:`Location` class, the positions of the point sources contained in the discretized source are defined by a common reference point (:py:attr:`lat`, :py:attr:`lon`) and cartesian offsets to this (:py:attr:`north_shifts`, :py:attr:`east_shifts`, :py:attr:`depths`). Alternatively latitude and longitude of each contained point source can be specified directly (:py:attr:`lats`, :py:attr:`lons`). ''' times = Array.T(shape=(None,), dtype=num.float) lats = Array.T(shape=(None,), dtype=num.float, optional=True) lons = Array.T(shape=(None,), dtype=num.float, optional=True) lat = Float.T(optional=True) lon = Float.T(optional=True) north_shifts = Array.T(shape=(None,), dtype=num.float, optional=True) east_shifts = Array.T(shape=(None,), dtype=num.float, optional=True) depths = Array.T(shape=(None,), dtype=num.float) dl = Float.T(optional=True) dw = Float.T(optional=True) nl = Float.T(optional=True) nw = Float.T(optional=True) @classmethod def check_scheme(cls, scheme): ''' Check if given GF component scheme is supported by the class. Raises :py:class:`UnavailableScheme` if the given scheme is not supported by this discretized source class. ''' if scheme not in cls.provided_schemes: raise UnavailableScheme( 'source type "%s" does not support GF component scheme "%s"' % (cls.__name__, scheme)) def __init__(self, **kwargs): Object.__init__(self, **kwargs) self._latlons = None def __setattr__(self, name, value): if name in ('lat', 'lon', 'north_shifts', 'east_shifts', 'lats', 'lons'): self.__dict__['_latlons'] = None Object.__setattr__(self, name, value) def get_source_terms(self, scheme): raise NotImplementedError() def make_weights(self, receiver, scheme): raise NotImplementedError() @property def effective_latlons(self): ''' Property holding the offest-corrected lats and lons of all points. ''' if self._latlons is None: if self.lats is not None and self.lons is not None: if (self.north_shifts is not None and self.east_shifts is not None): self._latlons = orthodrome.ne_to_latlon( self.lats, self.lons, self.north_shifts, self.east_shifts) else: self._latlons = self.lats, self.lons else: lat = g(self.lat, 0.0) lon = g(self.lon, 0.0) self._latlons = orthodrome.ne_to_latlon( lat, lon, self.north_shifts, self.east_shifts) return self._latlons @property def effective_north_shifts(self): if self.north_shifts is not None: return self.north_shifts else: return num.zeros(self.times.size) @property def effective_east_shifts(self): if self.east_shifts is not None: return self.east_shifts else: return num.zeros(self.times.size) def same_origin(self, receiver): ''' Check if receiver has same reference point. ''' return (g(self.lat, 0.0) == receiver.lat and g(self.lon, 0.0) == receiver.lon and self.lats is None and self.lons is None) def azibazis_to(self, receiver): ''' Compute azimuths and backaziumuths to/from receiver, for all contained points. ''' if self.same_origin(receiver): azis = r2d * num.arctan2(receiver.east_shift - self.east_shifts, receiver.north_shift - self.north_shifts) bazis = azis + 180. else: slats, slons = self.effective_latlons rlat, rlon = receiver.effective_latlon azis = orthodrome.azimuth_numpy(slats, slons, rlat, rlon) bazis = orthodrome.azimuth_numpy(rlat, rlon, slats, slons) return azis, bazis def distances_to(self, receiver): ''' Compute distances to receiver for all contained points. ''' if self.same_origin(receiver): return num.sqrt((self.north_shifts - receiver.north_shift)**2 + (self.east_shifts - receiver.east_shift)**2) else: slats, slons = self.effective_latlons rlat, rlon = receiver.effective_latlon return orthodrome.distance_accurate50m_numpy(slats, slons, rlat, rlon) def element_coords(self, i): if self.lats is not None and self.lons is not None: lat = float(self.lats[i]) lon = float(self.lons[i]) else: lat = self.lat lon = self.lon if self.north_shifts is not None and self.east_shifts is not None: north_shift = float(self.north_shifts[i]) east_shift = float(self.east_shifts[i]) else: north_shift = east_shift = 0.0 return lat, lon, north_shift, east_shift def coords5(self): xs = num.zeros((self.nelements, 5)) if self.lats is not None and self.lons is not None: xs[:, 0] = self.lats xs[:, 1] = self.lons else: xs[:, 0] = g(self.lat, 0.0) xs[:, 1] = g(self.lon, 0.0) if self.north_shifts is not None and self.east_shifts is not None: xs[:, 2] = self.north_shifts xs[:, 3] = self.east_shifts xs[:, 4] = self.depths return xs @property def nelements(self): return self.times.size @classmethod def combine(cls, sources, **kwargs): ''' Combine several discretized source models. Concatenenates all point sources in the given discretized ``sources``. Care must be taken when using this function that the external amplitude factors and reference times of the parameterized (undiscretized) sources match or are accounted for. ''' first = sources[0] if not all(type(s) == type(first) for s in sources): raise Exception('DiscretizedSource.combine must be called with ' 'sources of same type.') latlons = [] for s in sources: latlons.append(s.effective_latlons) lats, lons = num.hstack(latlons) if all((s.lats is None and s.lons is None) for s in sources): rlats = num.array([s.lat for s in sources], dtype=num.float) rlons = num.array([s.lon for s in sources], dtype=num.float) same_ref = num.all( rlats == rlats[0]) and num.all(rlons == rlons[0]) else: same_ref = False cat = num.concatenate times = cat([s.times for s in sources]) depths = cat([s.depths for s in sources]) if same_ref: lat = first.lat lon = first.lon north_shifts = cat([s.effective_north_shifts for s in sources]) east_shifts = cat([s.effective_east_shifts for s in sources]) lats = None lons = None else: lat = None lon = None north_shifts = None east_shifts = None return cls( times=times, lat=lat, lon=lon, lats=lats, lons=lons, north_shifts=north_shifts, east_shifts=east_shifts, depths=depths, **kwargs) def centroid_position(self): moments = self.moments() norm = num.sum(moments) if norm != 0.0: w = moments / num.sum(moments) else: w = num.ones(moments.size) if self.lats is not None and self.lons is not None: lats, lons = self.effective_latlons rlat, rlon = num.mean(lats), num.mean(lons) n, e = orthodrome.latlon_to_ne_numpy(rlat, rlon, lats, lons) else: rlat, rlon = g(self.lat, 0.0), g(self.lon, 0.0) n, e = self.north_shifts, self.east_shifts cn = num.sum(n*w) ce = num.sum(e*w) clat, clon = orthodrome.ne_to_latlon(rlat, rlon, cn, ce) if self.lats is not None and self.lons is not None: lat = clat lon = clon north_shift = 0. east_shift = 0. else: lat = g(self.lat, 0.0) lon = g(self.lon, 0.0) north_shift = cn east_shift = ce depth = num.sum(self.depths*w) time = num.sum(self.times*w) return tuple(float(x) for x in (time, lat, lon, north_shift, east_shift, depth))
[docs]class DiscretizedExplosionSource(DiscretizedSource): m0s = Array.T(shape=(None,), dtype=num.float) provided_schemes = ( 'elastic2', 'elastic8', 'elastic10', ) def get_source_terms(self, scheme): self.check_scheme(scheme) if scheme == 'elastic2': return self.m0s[:, num.newaxis].copy() elif scheme in ('elastic8', 'elastic10'): m6s = num.zeros((self.m0s.size, 6)) m6s[:, 0:3] = self.m0s[:, num.newaxis] return m6s else: assert False def make_weights(self, receiver, scheme): self.check_scheme(scheme) azis, bazis = self.azibazis_to(receiver) sb = num.sin(bazis*d2r-num.pi) cb = num.cos(bazis*d2r-num.pi) m0s = self.m0s n = azis.size cat = num.concatenate rep = num.repeat if scheme == 'elastic2': w_n = cb*m0s g_n = filledi(0, n) w_e = sb*m0s g_e = filledi(0, n) w_d = m0s g_d = filledi(1, n) elif scheme == 'elastic8': w_n = cat((cb*m0s, cb*m0s)) g_n = rep((0, 2), n) w_e = cat((sb*m0s, sb*m0s)) g_e = rep((0, 2), n) w_d = cat((m0s, m0s)) g_d = rep((5, 7), n) elif scheme == 'elastic10': w_n = cat((cb*m0s, cb*m0s, cb*m0s)) g_n = rep((0, 2, 8), n) w_e = cat((sb*m0s, sb*m0s, sb*m0s)) g_e = rep((0, 2, 8), n) w_d = cat((m0s, m0s, m0s)) g_d = rep((5, 7, 9), n) else: assert False return ( ('displacement.n', w_n, g_n), ('displacement.e', w_e, g_e), ('displacement.d', w_d, g_d), ) def split(self): from pyrocko.gf.seismosizer import ExplosionSource sources = [] for i in range(self.nelements): lat, lon, north_shift, east_shift = self.element_coords(i) sources.append(ExplosionSource( time=float(self.times[i]), lat=lat, lon=lon, north_shift=north_shift, east_shift=east_shift, depth=float(self.depths[i]), moment=float(self.m0s[i]))) return sources def moments(self): return self.m0s def centroid(self): from pyrocko.gf.seismosizer import ExplosionSource time, lat, lon, north_shift, east_shift, depth = \ self.centroid_position() return ExplosionSource( time=time, lat=lat, lon=lon, north_shift=north_shift, east_shift=east_shift, depth=depth, moment=float(num.sum(self.m0s)))
[docs] @classmethod def combine(cls, sources, **kwargs): ''' Combine several discretized source models. Concatenenates all point sources in the given discretized ``sources``. Care must be taken when using this function that the external amplitude factors and reference times of the parameterized (undiscretized) sources match or are accounted for. ''' if 'm0s' not in kwargs: kwargs['m0s'] = num.concatenate([s.m0s for s in sources]) return super(DiscretizedExplosionSource, cls).combine(sources, **kwargs)
[docs]class DiscretizedSFSource(DiscretizedSource): forces = Array.T(shape=(None, 3), dtype=num.float) provided_schemes = ( 'elastic5', ) def get_source_terms(self, scheme): self.check_scheme(scheme) return self.forces def make_weights(self, receiver, scheme): self.check_scheme(scheme) azis, bazis = self.azibazis_to(receiver) sa = num.sin(azis*d2r) ca = num.cos(azis*d2r) sb = num.sin(bazis*d2r-num.pi) cb = num.cos(bazis*d2r-num.pi) forces = self.forces fn = forces[:, 0] fe = forces[:, 1] fd = forces[:, 2] f0 = fd f1 = ca * fn + sa * fe f2 = ca * fe - sa * fn n = azis.size if scheme == 'elastic5': ioff = 0 cat = num.concatenate rep = num.repeat w_n = cat((cb*f0, cb*f1, -sb*f2)) g_n = ioff + rep((0, 1, 2), n) w_e = cat((sb*f0, sb*f1, cb*f2)) g_e = ioff + rep((0, 1, 2), n) w_d = cat((f0, f1)) g_d = ioff + rep((3, 4), n) return ( ('displacement.n', w_n, g_n), ('displacement.e', w_e, g_e), ('displacement.d', w_d, g_d), )
[docs] @classmethod def combine(cls, sources, **kwargs): ''' Combine several discretized source models. Concatenenates all point sources in the given discretized ``sources``. Care must be taken when using this function that the external amplitude factors and reference times of the parameterized (undiscretized) sources match or are accounted for. ''' if 'forces' not in kwargs: kwargs['forces'] = num.vstack([s.forces for s in sources]) return super(DiscretizedSFSource, cls).combine(sources, **kwargs)
def moments(self): return num.sum(self.forces**2, axis=1) def centroid(self): from pyrocko.gf.seismosizer import SFSource time, lat, lon, north_shift, east_shift, depth = \ self.centroid_position() fn, fe, fd = map(float, num.sum(self.forces, axis=0)) return SFSource( time=time, lat=lat, lon=lon, north_shift=north_shift, east_shift=east_shift, depth=depth, fn=fn, fe=fe, fd=fd)
[docs]class DiscretizedMTSource(DiscretizedSource): m6s = Array.T( shape=(None, 6), dtype=num.float, help='rows with (m_nn, m_ee, m_dd, m_ne, m_nd, m_ed)') provided_schemes = ( 'elastic8', 'elastic10', 'elastic18', ) def get_source_terms(self, scheme): self.check_scheme(scheme) return self.m6s def make_weights(self, receiver, scheme): self.check_scheme(scheme) m6s = self.m6s n = m6s.shape[0] rep = num.repeat if scheme == 'elastic18': w_n = m6s.flatten() g_n = num.tile(num.arange(0, 6), n) w_e = m6s.flatten() g_e = num.tile(num.arange(6, 12), n) w_d = m6s.flatten() g_d = num.tile(num.arange(12, 18), n) else: azis, bazis = self.azibazis_to(receiver) sa = num.sin(azis*d2r) ca = num.cos(azis*d2r) s2a = num.sin(2.*azis*d2r) c2a = num.cos(2.*azis*d2r) sb = num.sin(bazis*d2r-num.pi) cb = num.cos(bazis*d2r-num.pi) f0 = m6s[:, 0]*ca**2 + m6s[:, 1]*sa**2 + m6s[:, 3]*s2a f1 = m6s[:, 4]*ca + m6s[:, 5]*sa f2 = m6s[:, 2] f3 = 0.5*(m6s[:, 1]-m6s[:, 0])*s2a + m6s[:, 3]*c2a f4 = m6s[:, 5]*ca - m6s[:, 4]*sa f5 = m6s[:, 0]*sa**2 + m6s[:, 1]*ca**2 - m6s[:, 3]*s2a cat = num.concatenate if scheme == 'elastic8': w_n = cat((cb*f0, cb*f1, cb*f2, -sb*f3, -sb*f4)) g_n = rep((0, 1, 2, 3, 4), n) w_e = cat((sb*f0, sb*f1, sb*f2, cb*f3, cb*f4)) g_e = rep((0, 1, 2, 3, 4), n) w_d = cat((f0, f1, f2)) g_d = rep((5, 6, 7), n) elif scheme == 'elastic10': w_n = cat((cb*f0, cb*f1, cb*f2, cb*f5, -sb*f3, -sb*f4)) g_n = rep((0, 1, 2, 8, 3, 4), n) w_e = cat((sb*f0, sb*f1, sb*f2, sb*f5, cb*f3, cb*f4)) g_e = rep((0, 1, 2, 8, 3, 4), n) w_d = cat((f0, f1, f2, f5)) g_d = rep((5, 6, 7, 9), n) else: assert False return ( ('displacement.n', w_n, g_n), ('displacement.e', w_e, g_e), ('displacement.d', w_d, g_d), ) def split(self): from pyrocko.gf.seismosizer import MTSource sources = [] for i in range(self.nelements): lat, lon, north_shift, east_shift = self.element_coords(i) sources.append(MTSource( time=float(self.times[i]), lat=lat, lon=lon, north_shift=north_shift, east_shift=east_shift, depth=float(self.depths[i]), m6=self.m6s[i])) return sources def moments(self): moments = num.array( [num.linalg.eigvalsh(moment_tensor.symmat6(*m6)) for m6 in self.m6s]) return num.linalg.norm(moments, axis=1) / num.sqrt(2.) def get_moment_rate(self, deltat=None): moments = self.moments() times = self.times t_max = times.max() mom_times = num.arange(0, t_max + deltat, deltat) mom_times[mom_times > t_max] = t_max # Right open histrogram bins mom = num.array([ num.sum(moments[(times > t0) & (times <= t1)]) for t0, t1 in zip(mom_times[:-1], mom_times[1:]) ]) mom = num.concatenate(( (moments[times == 0.].sum(),), mom)) deltat = num.concatenate(( (deltat,), num.diff(mom_times))) mom_rate = mom / deltat return mom_rate, mom_times def centroid(self): from pyrocko.gf.seismosizer import MTSource time, lat, lon, north_shift, east_shift, depth = \ self.centroid_position() return MTSource( time=time, lat=lat, lon=lon, north_shift=north_shift, east_shift=east_shift, depth=depth, m6=num.sum(self.m6s, axis=0))
[docs] @classmethod def combine(cls, sources, **kwargs): ''' Combine several discretized source models. Concatenenates all point sources in the given discretized ``sources``. Care must be taken when using this function that the external amplitude factors and reference times of the parameterized (undiscretized) sources match or are accounted for. ''' if 'm6s' not in kwargs: kwargs['m6s'] = num.vstack([s.m6s for s in sources]) return super(DiscretizedMTSource, cls).combine(sources, **kwargs)
[docs]class DiscretizedPorePressureSource(DiscretizedSource): pp = Array.T(shape=(None,), dtype=num.float) provided_schemes = ( 'poroelastic10', ) def get_source_terms(self, scheme): self.check_scheme(scheme) return self.pp[:, num.newaxis].copy() def make_weights(self, receiver, scheme): self.check_scheme(scheme) azis, bazis = self.azibazis_to(receiver) sb = num.sin(bazis*d2r-num.pi) cb = num.cos(bazis*d2r-num.pi) pp = self.pp n = bazis.size w_un = cb*pp g_un = filledi(1, n) w_ue = sb*pp g_ue = filledi(1, n) w_ud = pp g_ud = filledi(0, n) w_tn = cb*pp g_tn = filledi(6, n) w_te = sb*pp g_te = filledi(6, n) w_pp = pp g_pp = filledi(7, n) w_dvn = cb*pp g_dvn = filledi(9, n) w_dve = sb*pp g_dve = filledi(9, n) w_dvd = pp g_dvd = filledi(8, n) return ( ('displacement.n', w_un, g_un), ('displacement.e', w_ue, g_ue), ('displacement.d', w_ud, g_ud), ('vertical_tilt.n', w_tn, g_tn), ('vertical_tilt.e', w_te, g_te), ('pore_pressure', w_pp, g_pp), ('darcy_velocity.n', w_dvn, g_dvn), ('darcy_velocity.e', w_dve, g_dve), ('darcy_velocity.d', w_dvd, g_dvd), ) def moments(self): return self.pp def centroid(self): from pyrocko.gf.seismosizer import PorePressurePointSource time, lat, lon, north_shift, east_shift, depth = \ self.centroid_position() return PorePressurePointSource( time=time, lat=lat, lon=lon, north_shift=north_shift, east_shift=east_shift, depth=depth, pp=float(num.sum(self.pp)))
[docs] @classmethod def combine(cls, sources, **kwargs): ''' Combine several discretized source models. Concatenenates all point sources in the given discretized ``sources``. Care must be taken when using this function that the external amplitude factors and reference times of the parameterized (undiscretized) sources match or are accounted for. ''' if 'pp' not in kwargs: kwargs['pp'] = num.concatenate([s.pp for s in sources]) return super(DiscretizedPorePressureSource, cls).combine(sources, **kwargs)
[docs]class Region(Object): name = String.T(optional=True)
[docs]class RectangularRegion(Region): lat_min = Float.T() lat_max = Float.T() lon_min = Float.T() lon_max = Float.T()
[docs]class CircularRegion(Region): lat = Float.T() lon = Float.T() radius = Float.T()
[docs]class Config(Object): ''' Green's function store meta information. Currently implemented :py:class:`~pyrocko.gf.store.Store` configuration types are: * :py:class:`~pyrocko.gf.meta.ConfigTypeA` - cylindrical or spherical symmetry, 1D earth model, single receiver depth * Problem is invariant to horizontal translations and rotations around vertical axis. * All receivers must be at the same depth (e.g. at the surface) * High level index variables: ``(source_depth, receiver_distance, component)`` * :py:class:`~pyrocko.gf.meta.ConfigTypeB` - cylindrical or spherical symmetry, 1D earth model, variable receiver depth * Symmetries like in Type A but has additional index for receiver depth * High level index variables: ``(source_depth, receiver_distance, receiver_depth, component)`` * :py:class:`~pyrocko.gf.meta.ConfigTypeC` - no symmetrical constraints but fixed receiver positions * Cartesian source volume around a reference point * High level index variables: ``(ireceiver, source_depth, source_east_shift, source_north_shift, component)`` ''' id = StringID.T( help='Name of the store. May consist of upper and lower-case letters, ' 'digits, dots and underscores. The name must start with a ' 'letter.') derived_from_id = StringID.T( optional=True, help='Name of the original store, if this store has been derived from ' 'another one (e.g. extracted subset).') version = String.T( default='1.0', optional=True, help='User-defined version string. Use <major>.<minor> format.') modelling_code_id = StringID.T( optional=True, help='Identifier of the backend used to compute the store.') author = Unicode.T( optional=True, help='Comma-separated list of author names.') author_email = String.T( optional=True, help="Author's contact email address.") created_time = Timestamp.T( optional=True, help='Time of creation of the store.') regions = List.T( Region.T(), help='Geographical regions for which the store is representative.') scope_type = ScopeType.T( optional=True, help='Distance range scope of the store ' '(%s).' % fmt_choices(ScopeType)) waveform_type = WaveType.T( optional=True, help='Wave type stored (%s).' % fmt_choices(WaveType)) nearfield_terms = NearfieldTermsType.T( optional=True, help='Information about the inclusion of near-field terms in the ' 'modelling (%s).' % fmt_choices(NearfieldTermsType)) description = String.T( optional=True, help='Free form textual description of the GF store.') references = List.T( Reference.T(), help='Reference list to cite the modelling code, earth model or ' 'related work.') earthmodel_1d = Earthmodel1D.T( optional=True, help='Layered earth model in ND (named discontinuity) format.') earthmodel_receiver_1d = Earthmodel1D.T( optional=True, help='Receiver-side layered earth model in ND format.') can_interpolate_source = Bool.T( optional=True, help='Hint to indicate if the spatial sampling of the store is dense ' 'enough for multi-linear interpolation at the source.') can_interpolate_receiver = Bool.T( optional=True, help='Hint to indicate if the spatial sampling of the store is dense ' 'enough for multi-linear interpolation at the receiver.') frequency_min = Float.T( optional=True, help='Hint to indicate the lower bound of valid frequencies [Hz].') frequency_max = Float.T( optional=True, help='Hint to indicate the upper bound of valid frequencies [Hz].') sample_rate = Float.T( optional=True, help='Sample rate of the GF store [Hz].') factor = Float.T( default=1.0, help='Gain value, factored out of the stored GF samples. ' '(may not work properly, keep at 1.0).', optional=True) component_scheme = ComponentScheme.T( default='elastic10', help='GF component scheme (%s).' % fmt_choices(ComponentScheme)) stored_quantity = QuantityType.T( optional=True, help='Physical quantity of stored values (%s). If not given, a ' 'default is used based on the GF component scheme. The default ' 'for the ``"elastic*"`` family of component schemes is ' '``"displacement"``.' % fmt_choices(QuantityType)) tabulated_phases = List.T( TPDef.T(), help='Mapping of phase names to phase definitions, for which travel ' 'time tables are available in the GF store.') ncomponents = Int.T( optional=True, help='Number of GF components. Use :gattr:`component_scheme` instead.') uuid = String.T( optional=True, help='Heuristic hash value which can be used to uniquely identify the ' 'GF store for practical purposes.') reference = String.T( optional=True, help='Store reference name composed of the store\'s :gattr:`id` and ' 'the first six letters of its :gattr:`uuid`.') def __init__(self, **kwargs): self._do_auto_updates = False Object.__init__(self, **kwargs) self._index_function = None self._indices_function = None self._vicinity_function = None self.validate(regularize=True, depth=1) self._do_auto_updates = True self.update() def check_ncomponents(self): ncomponents = component_scheme_to_description[ self.component_scheme].ncomponents if self.ncomponents is None: self.ncomponents = ncomponents elif ncomponents != self.ncomponents: raise InvalidNComponents( 'ncomponents=%i incompatible with component_scheme="%s"' % ( self.ncomponents, self.component_scheme)) def __setattr__(self, name, value): Object.__setattr__(self, name, value) try: self.T.get_property(name) if self._do_auto_updates: self.update() except ValueError: pass def update(self): self.check_ncomponents() self._update() self._make_index_functions() def irecord(self, *args): return self._index_function(*args) def irecords(self, *args): return self._indices_function(*args) def vicinity(self, *args): return self._vicinity_function(*args) def vicinities(self, *args): return self._vicinities_function(*args) def grid_interpolation_coefficients(self, *args): return self._grid_interpolation_coefficients(*args) def nodes(self, level=None, minlevel=None): return nodes(self.coords[minlevel:level]) def iter_nodes(self, level=None, minlevel=None): return nditer_outer(self.coords[minlevel:level]) def iter_extraction(self, gdef, level=None): i = 0 arrs = [] ntotal = 1 for mi, ma, inc in zip(self.mins, self.effective_maxs, self.deltas): if gdef and len(gdef) > i: sssn = gdef[i] else: sssn = (None,)*4 arr = num.linspace(*start_stop_num(*(sssn + (mi, ma, inc)))) ntotal *= len(arr) arrs.append(arr) i += 1 arrs.append(self.coords[-1]) return nditer_outer(arrs[:level]) def make_sum_params(self, source, receiver, implementation='c', nthreads=0): assert implementation in ['c', 'python'] out = [] delays = source.times for comp, weights, icomponents in source.make_weights( receiver, self.component_scheme): weights *= self.factor args = self.make_indexing_args(source, receiver, icomponents) delays_expanded = num.tile(delays, icomponents.size//delays.size) out.append((comp, args, delays_expanded, weights)) return out def short_info(self): raise NotImplementedError('should be implemented in subclass')
[docs] def get_lambda_moduli(self, lat, lon, points, interpolation=None): ''' Get lambda moduli at given points from contained velocity model. :param lat: surface origin for coordinate system of ``points`` :param points: NumPy array of shape ``(N, 3)``, where each row is a point ``(north, east, depth)``, relative to origin at ``(lat, lon)`` :param interpolation: interpolation method. Choose from ``('nearest_neighbor', 'multilinear')`` :returns: NumPy array of length N with extracted shear moduli at each point The default implementation retrieves and interpolates the lambda moduli from the contained 1D velocity profile. ''' return self.get_material_property(lat, lon, points, parameter='lambda_moduli', interpolation=interpolation)
[docs] def get_bulk_moduli(self, lat, lon, points, interpolation=None): ''' Get bulk moduli at given points from contained velocity model. :param lat: surface origin for coordinate system of ``points`` :param points: NumPy array of shape ``(N, 3)``, where each row is a point ``(north, east, depth)``, relative to origin at ``(lat, lon)`` :param interpolation: interpolation method. Choose from ``('nearest_neighbor', 'multilinear')`` :returns: NumPy array of length N with extracted shear moduli at each point The default implementation retrieves and interpolates the lambda moduli from the contained 1D velocity profile. ''' lambda_moduli = self.get_material_property( lat, lon, points, parameter='lambda_moduli', interpolation=interpolation) shear_moduli = self.get_material_property( lat, lon, points, parameter='shear_moduli', interpolation=interpolation) return lambda_moduli + (2 / 3) * shear_moduli
[docs] def get_shear_moduli(self, lat, lon, points, interpolation=None): ''' Get shear moduli at given points from contained velocity model. :param lat: surface origin for coordinate system of ``points`` :param points: NumPy array of shape ``(N, 3)``, where each row is a point ``(north, east, depth)``, relative to origin at ``(lat, lon)`` :param interpolation: interpolation method. Choose from ``('nearest_neighbor', 'multilinear')`` :returns: NumPy array of length N with extracted shear moduli at each point The default implementation retrieves and interpolates the shear moduli from the contained 1D velocity profile. ''' return self.get_material_property(lat, lon, points, parameter='shear_moduli', interpolation=interpolation)
[docs] def get_vs(self, lat, lon, points, interpolation=None): ''' Get Vs at given points from contained velocity model. :param lat: surface origin for coordinate system of ``points`` :param points: NumPy array of shape ``(N, 3)``, where each row is a point ``(north, east, depth)``, relative to origin at ``(lat, lon)`` :param interpolation: interpolation method. Choose from ``('nearest_neighbor', 'multilinear')`` :returns: NumPy array of length N with extracted shear moduli at each point The default implementation retrieves and interpolates Vs from the contained 1D velocity profile. ''' return self.get_material_property(lat, lon, points, parameter='vs', interpolation=interpolation)
[docs] def get_vp(self, lat, lon, points, interpolation=None): ''' Get Vp at given points from contained velocity model. :param lat: surface origin for coordinate system of ``points`` :param points: NumPy array of shape ``(N, 3)``, where each row is a point ``(north, east, depth)``, relative to origin at ``(lat, lon)`` :param interpolation: interpolation method. Choose from ``('nearest_neighbor', 'multilinear')`` :returns: NumPy array of length N with extracted shear moduli at each point The default implementation retrieves and interpolates Vp from the contained 1D velocity profile. ''' return self.get_material_property(lat, lon, points, parameter='vp', interpolation=interpolation)
[docs] def get_rho(self, lat, lon, points, interpolation=None): ''' Get rho at given points from contained velocity model. :param lat: surface origin for coordinate system of ``points`` :param points: NumPy array of shape ``(N, 3)``, where each row is a point ``(north, east, depth)``, relative to origin at ``(lat, lon)`` :param interpolation: interpolation method. Choose from ``('nearest_neighbor', 'multilinear')`` :returns: NumPy array of length N with extracted shear moduli at each point The default implementation retrieves and interpolates rho from the contained 1D velocity profile. ''' return self.get_material_property(lat, lon, points, parameter='rho', interpolation=interpolation)
def get_material_property(self, lat, lon, points, parameter='vs', interpolation=None): if interpolation is None: raise TypeError('Interpolation method not defined! available: ' "multilinear", "nearest_neighbor") earthmod = self.earthmodel_1d store_depth_profile = self.get_source_depths() z_profile = earthmod.profile('z') if parameter == 'vs': vs_profile = earthmod.profile('vs') profile = num.interp( store_depth_profile, z_profile, vs_profile) elif parameter == 'vp': vp_profile = earthmod.profile('vp') profile = num.interp( store_depth_profile, z_profile, vp_profile) elif parameter == 'rho': rho_profile = earthmod.profile('rho') profile = num.interp( store_depth_profile, z_profile, rho_profile) elif parameter == 'shear_moduli': vs_profile = earthmod.profile('vs') rho_profile = earthmod.profile('rho') store_vs_profile = num.interp( store_depth_profile, z_profile, vs_profile) store_rho_profile = num.interp( store_depth_profile, z_profile, rho_profile) profile = num.power(store_vs_profile, 2) * store_rho_profile elif parameter == 'lambda_moduli': vs_profile = earthmod.profile('vs') vp_profile = earthmod.profile('vp') rho_profile = earthmod.profile('rho') store_vs_profile = num.interp( store_depth_profile, z_profile, vs_profile) store_vp_profile = num.interp( store_depth_profile, z_profile, vp_profile) store_rho_profile = num.interp( store_depth_profile, z_profile, rho_profile) profile = store_rho_profile * ( num.power(store_vp_profile, 2) - num.power(store_vs_profile, 2) * 2) else: raise TypeError( 'parameter %s not available' % parameter) if interpolation == 'multilinear': kind = 'linear' elif interpolation == 'nearest_neighbor': kind = 'nearest' else: raise TypeError( 'Interpolation method %s not available' % interpolation) interpolator = interp1d(store_depth_profile, profile, kind=kind) try: return interpolator(points[:, 2]) except ValueError: raise OutOfBounds() def is_static(self): for code in ('psgrn_pscmp', 'poel'): if self.modelling_code_id.startswith(code): return True return False def is_dynamic(self): return not self.is_static() def get_source_depths(self): raise NotImplementedError('must be implemented in subclass')
[docs] def get_tabulated_phase(self, phase_id): ''' Get tabulated phase definition. ''' for pdef in self.tabulated_phases: if pdef.id == phase_id: return pdef raise StoreError('No such phase: %s' % phase_id)
def fix_ttt_holes(self, sptree, mode): raise StoreError( 'Cannot fix travel time table holes in GF stores of type %s.' % self.short_type)
[docs]class ConfigTypeA(Config): ''' Cylindrical symmetry, 1D earth model, single receiver depth * Problem is invariant to horizontal translations and rotations around vertical axis. * All receivers must be at the same depth (e.g. at the surface) High level index variables: ``(source_depth, distance, component)`` * The ``distance`` is the surface distance between source and receiver points. ''' receiver_depth = Float.T( default=0.0, help='Fixed receiver depth [m].') source_depth_min = Float.T( help='Minimum source depth [m].') source_depth_max = Float.T( help='Maximum source depth [m].') source_depth_delta = Float.T( help='Grid spacing of source depths [m]') distance_min = Float.T( help='Minimum source-receiver surface distance [m].') distance_max = Float.T( help='Maximum source-receiver surface distance [m].') distance_delta = Float.T( help='Grid spacing of source-receiver surface distance [m].') short_type = 'A' provided_schemes = [ 'elastic2', 'elastic5', 'elastic8', 'elastic10', 'poroelastic10'] def get_surface_distance(self, args): return args[1] def get_distance(self, args): return math.sqrt(args[0]**2 + args[1]**2) def get_source_depth(self, args): return args[0] def get_source_depths(self): return self.coords[0] def get_receiver_depth(self, args): return self.receiver_depth def _update(self): self.mins = num.array( [self.source_depth_min, self.distance_min], dtype=num.float) self.maxs = num.array( [self.source_depth_max, self.distance_max], dtype=num.float) self.deltas = num.array( [self.source_depth_delta, self.distance_delta], dtype=num.float) self.ns = num.floor((self.maxs - self.mins) / self.deltas + vicinity_eps).astype(num.int) + 1 self.effective_maxs = self.mins + self.deltas * (self.ns - 1) self.deltat = 1.0/self.sample_rate self.nrecords = num.product(self.ns) * self.ncomponents self.coords = tuple(num.linspace(mi, ma, n) for (mi, ma, n) in zip(self.mins, self.effective_maxs, self.ns)) + \ (num.arange(self.ncomponents),) self.nsource_depths, self.ndistances = self.ns def _make_index_functions(self): amin, bmin = self.mins da, db = self.deltas na, nb = self.ns ng = self.ncomponents def index_function(a, b, ig): ia = int(round((a - amin) / da)) ib = int(round((b - bmin) / db)) try: return num.ravel_multi_index((ia, ib, ig), (na, nb, ng)) except ValueError: raise OutOfBounds() def indices_function(a, b, ig): ia = num.round((a - amin) / da).astype(int) ib = num.round((b - bmin) / db).astype(int) try: return num.ravel_multi_index((ia, ib, ig), (na, nb, ng)) except ValueError: for ia_, ib_, ig_ in zip(ia, ib, ig): try: num.ravel_multi_index((ia_, ib_, ig_), (na, nb, ng)) except ValueError: raise OutOfBounds() def grid_interpolation_coefficients(a, b): ias = indi12((a - amin) / da, na) ibs = indi12((b - bmin) / db, nb) return ias, ibs def vicinity_function(a, b, ig): ias, ibs = grid_interpolation_coefficients(a, b) if not (0 <= ig < ng): raise OutOfBounds() indis = [] weights = [] for ia, va in ias: iia = ia*nb*ng for ib, vb in ibs: indis.append(iia + ib*ng + ig) weights.append(va*vb) return num.array(indis), num.array(weights) def vicinities_function(a, b, ig): xa = (a - amin) / da xb = (b - bmin) / db xa_fl = num.floor(xa) xa_ce = num.ceil(xa) xb_fl = num.floor(xb) xb_ce = num.ceil(xb) va_fl = 1.0 - (xa - xa_fl) va_ce = (1.0 - (xa_ce - xa)) * (xa_ce - xa_fl) vb_fl = 1.0 - (xb - xb_fl) vb_ce = (1.0 - (xb_ce - xb)) * (xb_ce - xb_fl) ia_fl = xa_fl.astype(num.int) ia_ce = xa_ce.astype(num.int) ib_fl = xb_fl.astype(num.int) ib_ce = xb_ce.astype(num.int) if num.any(ia_fl < 0) or num.any(ia_fl >= na): raise OutOfBounds() if num.any(ia_ce < 0) or num.any(ia_ce >= na): raise OutOfBounds() if num.any(ib_fl < 0) or num.any(ib_fl >= nb): raise OutOfBounds() if num.any(ib_ce < 0) or num.any(ib_ce >= nb): raise OutOfBounds() irecords = num.empty(a.size*4, dtype=num.int) irecords[0::4] = ia_fl*nb*ng + ib_fl*ng + ig irecords[1::4] = ia_ce*nb*ng + ib_fl*ng + ig irecords[2::4] = ia_fl*nb*ng + ib_ce*ng + ig irecords[3::4] = ia_ce*nb*ng + ib_ce*ng + ig weights = num.empty(a.size*4, dtype=num.float) weights[0::4] = va_fl * vb_fl weights[1::4] = va_ce * vb_fl weights[2::4] = va_fl * vb_ce weights[3::4] = va_ce * vb_ce return irecords, weights self._index_function = index_function self._indices_function = indices_function self._grid_interpolation_coefficients = grid_interpolation_coefficients self._vicinity_function = vicinity_function self._vicinities_function = vicinities_function def make_indexing_args(self, source, receiver, icomponents): nc = icomponents.size dists = source.distances_to(receiver) n = dists.size return (num.tile(source.depths, nc//n), num.tile(dists, nc//n), icomponents) def make_indexing_args1(self, source, receiver): return (source.depth, source.distance_to(receiver)) @property def short_extent(self): return '%g:%g:%g x %g:%g:%g' % ( self.source_depth_min/km, self.source_depth_max/km, self.source_depth_delta/km, self.distance_min/km, self.distance_max/km, self.distance_delta/km) def fix_ttt_holes(self, sptree, mode): from pyrocko import eikonal_ext, spit nodes = self.nodes(level=-1) delta = self.deltas[-1] assert num.all(delta == self.deltas) nsources, ndistances = self.ns points = num.zeros((nodes.shape[0], 3)) points[:, 0] = nodes[:, 1] points[:, 2] = nodes[:, 0] speeds = self.get_material_property( 0., 0., points, parameter='vp' if mode == cake.P else 'vs', interpolation='multilinear') speeds = speeds.reshape((nsources, ndistances)) times = sptree.interpolate_many(nodes) times[num.isnan(times)] = -1. times = times.reshape(speeds.shape) try: eikonal_ext.eikonal_solver_fmm_cartesian( speeds, times, delta) except eikonal_ext.EikonalExtError as e: if str(e).endswith('please check results'): logger.debug( 'Got a warning from eikonal solver ' '- may be ok...') else: raise def func(x): ibs, ics = \ self.grid_interpolation_coefficients(*x) t = 0 for ib, vb in ibs: for ic, vc in ics: t += times[ib, ic] * vb * vc return t return spit.SPTree( f=func, ftol=sptree.ftol, xbounds=sptree.xbounds, xtols=sptree.xtols)
[docs]class ConfigTypeB(Config): ''' Cylindrical symmetry, 1D earth model, variable receiver depth * Symmetries like in :py:class:`ConfigTypeA` but has additional index for receiver depth * High level index variables: ``(source_depth, receiver_distance, receiver_depth, component)`` ''' receiver_depth_min = Float.T( help='Minimum receiver depth [m].') receiver_depth_max = Float.T( help='Maximum receiver depth [m].') receiver_depth_delta = Float.T( help='Grid spacing of receiver depths [m]') source_depth_min = Float.T( help='Minimum source depth [m].') source_depth_max = Float.T( help='Maximum source depth [m].') source_depth_delta = Float.T( help='Grid spacing of source depths [m]') distance_min = Float.T( help='Minimum source-receiver surface distance [m].') distance_max = Float.T( help='Maximum source-receiver surface distance [m].') distance_delta = Float.T( help='Grid spacing of source-receiver surface distances [m].') short_type = 'B' provided_schemes = [ 'elastic2', 'elastic5', 'elastic8', 'elastic10', 'poroelastic10'] def get_distance(self, args): return math.sqrt((args[1] - args[0])**2 + args[2]**2) def get_surface_distance(self, args): return args[2] def get_source_depth(self, args): return args[1] def get_receiver_depth(self, args): return args[0] def get_source_depths(self): return self.coords[1] def _update(self): self.mins = num.array([ self.receiver_depth_min, self.source_depth_min, self.distance_min], dtype=num.float) self.maxs = num.array([ self.receiver_depth_max, self.source_depth_max, self.distance_max], dtype=num.float) self.deltas = num.array([ self.receiver_depth_delta, self.source_depth_delta, self.distance_delta], dtype=num.float) self.ns = num.floor((self.maxs - self.mins) / self.deltas + vicinity_eps).astype(num.int) + 1 self.effective_maxs = self.mins + self.deltas * (self.ns - 1) self.deltat = 1.0/self.sample_rate self.nrecords = num.product(self.ns) * self.ncomponents self.coords = tuple(num.linspace(mi, ma, n) for (mi, ma, n) in zip(self.mins, self.effective_maxs, self.ns)) + \ (num.arange(self.ncomponents),) self.nreceiver_depths, self.nsource_depths, self.ndistances = self.ns def _make_index_functions(self): amin, bmin, cmin = self.mins da, db, dc = self.deltas na, nb, nc = self.ns ng = self.ncomponents def index_function(a, b, c, ig): ia = int(round((a - amin) / da)) ib = int(round((b - bmin) / db)) ic = int(round((c - cmin) / dc)) try: return num.ravel_multi_index((ia, ib, ic, ig), (na, nb, nc, ng)) except ValueError: raise OutOfBounds() def indices_function(a, b, c, ig): ia = num.round((a - amin) / da).astype(int) ib = num.round((b - bmin) / db).astype(int) ic = num.round((c - cmin) / dc).astype(int) try: return num.ravel_multi_index((ia, ib, ic, ig), (na, nb, nc, ng)) except ValueError: raise OutOfBounds() def grid_interpolation_coefficients(a, b, c): ias = indi12((a - amin) / da, na) ibs = indi12((b - bmin) / db, nb) ics = indi12((c - cmin) / dc, nc) return ias, ibs, ics def vicinity_function(a, b, c, ig): ias, ibs, ics = grid_interpolation_coefficients(a, b, c) if not (0 <= ig < ng): raise OutOfBounds() indis = [] weights = [] for ia, va in ias: iia = ia*nb*nc*ng for ib, vb in ibs: iib = ib*nc*ng for ic, vc in ics: indis.append(iia + iib + ic*ng + ig) weights.append(va*vb*vc) return num.array(indis), num.array(weights) def vicinities_function(a, b, c, ig): xa = (a - amin) / da xb = (b - bmin) / db xc = (c - cmin) / dc xa_fl = num.floor(xa) xa_ce = num.ceil(xa) xb_fl = num.floor(xb) xb_ce = num.ceil(xb) xc_fl = num.floor(xc) xc_ce = num.ceil(xc) va_fl = 1.0 - (xa - xa_fl) va_ce = (1.0 - (xa_ce - xa)) * (xa_ce - xa_fl) vb_fl = 1.0 - (xb - xb_fl) vb_ce = (1.0 - (xb_ce - xb)) * (xb_ce - xb_fl) vc_fl = 1.0 - (xc - xc_fl) vc_ce = (1.0 - (xc_ce - xc)) * (xc_ce - xc_fl) ia_fl = xa_fl.astype(num.int) ia_ce = xa_ce.astype(num.int) ib_fl = xb_fl.astype(num.int) ib_ce = xb_ce.astype(num.int) ic_fl = xc_fl.astype(num.int) ic_ce = xc_ce.astype(num.int) if num.any(ia_fl < 0) or num.any(ia_fl >= na): raise OutOfBounds() if num.any(ia_ce < 0) or num.any(ia_ce >= na): raise OutOfBounds() if num.any(ib_fl < 0) or num.any(ib_fl >= nb): raise OutOfBounds() if num.any(ib_ce < 0) or num.any(ib_ce >= nb): raise OutOfBounds() if num.any(ic_fl < 0) or num.any(ic_fl >= nc): raise OutOfBounds() if num.any(ic_ce < 0) or num.any(ic_ce >= nc): raise OutOfBounds() irecords = num.empty(a.size*8, dtype=num.int) irecords[0::8] = ia_fl*nb*nc*ng + ib_fl*nc*ng + ic_fl*ng + ig irecords[1::8] = ia_ce*nb*nc*ng + ib_fl*nc*ng + ic_fl*ng + ig irecords[2::8] = ia_fl*nb*nc*ng + ib_ce*nc*ng + ic_fl*ng + ig irecords[3::8] = ia_ce*nb*nc*ng + ib_ce*nc*ng + ic_fl*ng + ig irecords[4::8] = ia_fl*nb*nc*ng + ib_fl*nc*ng + ic_ce*ng + ig irecords[5::8] = ia_ce*nb*nc*ng + ib_fl*nc*ng + ic_ce*ng + ig irecords[6::8] = ia_fl*nb*nc*ng + ib_ce*nc*ng + ic_ce*ng + ig irecords[7::8] = ia_ce*nb*nc*ng + ib_ce*nc*ng + ic_ce*ng + ig weights = num.empty(a.size*8, dtype=num.float) weights[0::8] = va_fl * vb_fl * vc_fl weights[1::8] = va_ce * vb_fl * vc_fl weights[2::8] = va_fl * vb_ce * vc_fl weights[3::8] = va_ce * vb_ce * vc_fl weights[4::8] = va_fl * vb_fl * vc_ce weights[5::8] = va_ce * vb_fl * vc_ce weights[6::8] = va_fl * vb_ce * vc_ce weights[7::8] = va_ce * vb_ce * vc_ce return irecords, weights self._index_function = index_function self._indices_function = indices_function self._grid_interpolation_coefficients = grid_interpolation_coefficients self._vicinity_function = vicinity_function self._vicinities_function = vicinities_function def make_indexing_args(self, source, receiver, icomponents): nc = icomponents.size dists = source.distances_to(receiver) n = dists.size receiver_depths = num.empty(nc) receiver_depths.fill(receiver.depth) return (receiver_depths, num.tile(source.depths, nc//n), num.tile(dists, nc//n), icomponents) def make_indexing_args1(self, source, receiver): return (receiver.depth, source.depth, source.distance_to(receiver)) @property def short_extent(self): return '%g:%g:%g x %g:%g:%g x %g:%g:%g' % ( self.receiver_depth_min/km, self.receiver_depth_max/km, self.receiver_depth_delta/km, self.source_depth_min/km, self.source_depth_max/km, self.source_depth_delta/km, self.distance_min/km, self.distance_max/km, self.distance_delta/km) def fix_ttt_holes(self, sptree, mode): from pyrocko import eikonal_ext, spit nodes_sr = self.nodes(minlevel=1, level=-1) delta = self.deltas[-1] assert num.all(delta == self.deltas[1:]) nreceivers, nsources, ndistances = self.ns points = num.zeros((nodes_sr.shape[0], 3)) points[:, 0] = nodes_sr[:, 1] points[:, 2] = nodes_sr[:, 0] speeds = self.get_material_property( 0., 0., points, parameter='vp' if mode == cake.P else 'vs', interpolation='multilinear') speeds = speeds.reshape((nsources, ndistances)) receiver_times = [] for ireceiver in range(nreceivers): nodes = num.hstack([ num_full( (nodes_sr.shape[0], 1), self.coords[0][ireceiver]), nodes_sr]) times = sptree.interpolate_many(nodes) times[num.isnan(times)] = -1. times = times.reshape(speeds.shape) try: eikonal_ext.eikonal_solver_fmm_cartesian( speeds, times, delta) except eikonal_ext.EikonalExtError as e: if str(e).endswith('please check results'): logger.debug( 'Got a warning from eikonal solver ' '- may be ok...') else: raise receiver_times.append(times) def func(x): ias, ibs, ics = \ self.grid_interpolation_coefficients(*x) t = 0 for ia, va in ias: times = receiver_times[ia] for ib, vb in ibs: for ic, vc in ics: t += times[ib, ic] * va * vb * vc return t return spit.SPTree( f=func, ftol=sptree.ftol, xbounds=sptree.xbounds, xtols=sptree.xtols)
[docs]class ConfigTypeC(Config): ''' No symmetrical constraints but fixed receiver positions. * Cartesian 3D source volume around a reference point * High level index variables: ``(ireceiver, source_depth, source_east_shift, source_north_shift, component)`` ''' receivers = List.T( Receiver.T(), help='List of fixed receivers.') source_origin = Location.T( help='Origin of the source volume grid.') source_depth_min = Float.T( help='Minimum source depth [m].') source_depth_max = Float.T( help='Maximum source depth [m].') source_depth_delta = Float.T( help='Source depth grid spacing [m].') source_east_shift_min = Float.T( help='Minimum easting of source grid [m].') source_east_shift_max = Float.T( help='Maximum easting of source grid [m].') source_east_shift_delta = Float.T( help='Source volume grid spacing in east direction [m].') source_north_shift_min = Float.T( help='Minimum northing of source grid [m].') source_north_shift_max = Float.T( help='Maximum northing of source grid [m].') source_north_shift_delta = Float.T( help='Source volume grid spacing in north direction [m].') short_type = 'C' provided_schemes = ['elastic18'] def get_surface_distance(self, args): ireceiver, _, source_east_shift, source_north_shift, _ = args sorig = self.source_origin sloc = Location( lat=sorig.lat, lon=sorig.lon, north_shift=sorig.north_shift + source_north_shift, east_shift=sorig.east_shift + source_east_shift) return self.receivers[args[0]].distance_to(sloc) def get_distance(self, args): # to be improved... ireceiver, sdepth, source_east_shift, source_north_shift, _ = args sorig = self.source_origin sloc = Location( lat=sorig.lat, lon=sorig.lon, north_shift=sorig.north_shift + source_north_shift, east_shift=sorig.east_shift + source_east_shift) return math.sqrt( self.receivers[args[0]].distance_to(sloc)**2 + sdepth**2) def get_source_depth(self, args): return args[1] def get_receiver_depth(self, args): return self.receivers[args[0]].depth def get_source_depths(self): return self.coords[0] def _update(self): self.mins = num.array([ self.source_depth_min, self.source_east_shift_min, self.source_north_shift_min], dtype=num.float) self.maxs = num.array([ self.source_depth_max, self.source_east_shift_max, self.source_north_shift_max], dtype=num.float) self.deltas = num.array([ self.source_depth_delta, self.source_east_shift_delta, self.source_north_shift_delta], dtype=num.float) self.ns = num.floor((self.maxs - self.mins) / self.deltas + vicinity_eps).astype(num.int) + 1 self.effective_maxs = self.mins + self.deltas * (self.ns - 1) self.deltat = 1.0/self.sample_rate self.nreceivers = len(self.receivers) self.nrecords = \ self.nreceivers * num.product(self.ns) * self.ncomponents self.coords = (num.arange(self.nreceivers),) + \ tuple(num.linspace(mi, ma, n) for (mi, ma, n) in zip(self.mins, self.effective_maxs, self.ns)) + \ (num.arange(self.ncomponents),) self.nreceiver_depths, self.nsource_depths, self.ndistances = self.ns self._distances_cache = {} def _make_index_functions(self): amin, bmin, cmin = self.mins da, db, dc = self.deltas na, nb, nc = self.ns ng = self.ncomponents nr = self.nreceivers def index_function(ir, a, b, c, ig): ia = int(round((a - amin) / da)) ib = int(round((b - bmin) / db)) ic = int(round((c - cmin) / dc)) try: return num.ravel_multi_index((ir, ia, ib, ic, ig), (nr, na, nb, nc, ng)) except ValueError: raise OutOfBounds() def indices_function(ir, a, b, c, ig): ia = num.round((a - amin) / da).astype(int) ib = num.round((b - bmin) / db).astype(int) ic = num.round((c - cmin) / dc).astype(int) try: return num.ravel_multi_index((ir, ia, ib, ic, ig), (nr, na, nb, nc, ng)) except ValueError: raise OutOfBounds() def vicinity_function(ir, a, b, c, ig): ias = indi12((a - amin) / da, na) ibs = indi12((b - bmin) / db, nb) ics = indi12((c - cmin) / dc, nc) if not (0 <= ir < nr): raise OutOfBounds() if not (0 <= ig < ng): raise OutOfBounds() indis = [] weights = [] iir = ir*na*nb*nc*ng for ia, va in ias: iia = ia*nb*nc*ng for ib, vb in ibs: iib = ib*nc*ng for ic, vc in ics: indis.append(iir + iia + iib + ic*ng + ig) weights.append(va*vb*vc) return num.array(indis), num.array(weights) def vicinities_function(ir, a, b, c, ig): xa = (a-amin) / da xb = (b-bmin) / db xc = (c-cmin) / dc xa_fl = num.floor(xa) xa_ce = num.ceil(xa) xb_fl = num.floor(xb) xb_ce = num.ceil(xb) xc_fl = num.floor(xc) xc_ce = num.ceil(xc) va_fl = 1.0 - (xa - xa_fl) va_ce = (1.0 - (xa_ce - xa)) * (xa_ce - xa_fl) vb_fl = 1.0 - (xb - xb_fl) vb_ce = (1.0 - (xb_ce - xb)) * (xb_ce - xb_fl) vc_fl = 1.0 - (xc - xc_fl) vc_ce = (1.0 - (xc_ce - xc)) * (xc_ce - xc_fl) ia_fl = xa_fl.astype(num.int) ia_ce = xa_ce.astype(num.int) ib_fl = xb_fl.astype(num.int) ib_ce = xb_ce.astype(num.int) ic_fl = xc_fl.astype(num.int) ic_ce = xc_ce.astype(num.int) if num.any(ia_fl < 0) or num.any(ia_fl >= na): raise OutOfBounds() if num.any(ia_ce < 0) or num.any(ia_ce >= na): raise OutOfBounds() if num.any(ib_fl < 0) or num.any(ib_fl >= nb): raise OutOfBounds() if num.any(ib_ce < 0) or num.any(ib_ce >= nb): raise OutOfBounds() if num.any(ic_fl < 0) or num.any(ic_fl >= nc): raise OutOfBounds() if num.any(ic_ce < 0) or num.any(ic_ce >= nc): raise OutOfBounds() irig = ir*na*nb*nc*ng + ig irecords = num.empty(a.size*8, dtype=num.int) irecords[0::8] = ia_fl*nb*nc*ng + ib_fl*nc*ng + ic_fl*ng + irig irecords[1::8] = ia_ce*nb*nc*ng + ib_fl*nc*ng + ic_fl*ng + irig irecords[2::8] = ia_fl*nb*nc*ng + ib_ce*nc*ng + ic_fl*ng + irig irecords[3::8] = ia_ce*nb*nc*ng + ib_ce*nc*ng + ic_fl*ng + irig irecords[4::8] = ia_fl*nb*nc*ng + ib_fl*nc*ng + ic_ce*ng + irig irecords[5::8] = ia_ce*nb*nc*ng + ib_fl*nc*ng + ic_ce*ng + irig irecords[6::8] = ia_fl*nb*nc*ng + ib_ce*nc*ng + ic_ce*ng + irig irecords[7::8] = ia_ce*nb*nc*ng + ib_ce*nc*ng + ic_ce*ng + irig weights = num.empty(a.size*8, dtype=num.float) weights[0::8] = va_fl * vb_fl * vc_fl weights[1::8] = va_ce * vb_fl * vc_fl weights[2::8] = va_fl * vb_ce * vc_fl weights[3::8] = va_ce * vb_ce * vc_fl weights[4::8] = va_fl * vb_fl * vc_ce weights[5::8] = va_ce * vb_fl * vc_ce weights[6::8] = va_fl * vb_ce * vc_ce weights[7::8] = va_ce * vb_ce * vc_ce return irecords, weights self._index_function = index_function self._indices_function = indices_function self._vicinity_function = vicinity_function self._vicinities_function = vicinities_function def lookup_ireceiver(self, receiver): k = (receiver.lat, receiver.lon, receiver.north_shift, receiver.east_shift) dh = min(self.source_north_shift_delta, self.source_east_shift_delta) dv = self.source_depth_delta for irec, rec in enumerate(self.receivers): if (k, irec) not in self._distances_cache: self._distances_cache[k, irec] = math.sqrt( (receiver.distance_to(rec)/dh)**2 + ((rec.depth - receiver.depth)/dv)**2) if self._distances_cache[k, irec] < 0.1: return irec raise OutOfBounds( reason='No GFs available for receiver at (%g, %g).' % receiver.effective_latlon) def make_indexing_args(self, source, receiver, icomponents): nc = icomponents.size dists = source.distances_to(self.source_origin) azis, _ = source.azibazis_to(self.source_origin) source_north_shifts = - num.cos(d2r*azis) * dists source_east_shifts = - num.sin(d2r*azis) * dists source_depths = source.depths - self.source_origin.depth n = dists.size ireceivers = num.empty(nc, dtype=num.int) ireceivers.fill(self.lookup_ireceiver(receiver)) return (ireceivers, num.tile(source_depths, nc//n), num.tile(source_east_shifts, nc//n), num.tile(source_north_shifts, nc//n), icomponents) def make_indexing_args1(self, source, receiver): dist = source.distance_to(self.source_origin) azi, _ = source.azibazi_to(self.source_origin) source_north_shift = - num.cos(d2r*azi) * dist source_east_shift = - num.sin(d2r*azi) * dist source_depth = source.depth - self.source_origin.depth return (self.lookup_ireceiver(receiver), source_depth, source_east_shift, source_north_shift) @property def short_extent(self): return '%g:%g:%g x %g:%g:%g x %g:%g:%g' % ( self.source_depth_min/km, self.source_depth_max/km, self.source_depth_delta/km, self.source_east_shift_min/km, self.source_east_shift_max/km, self.source_east_shift_delta/km, self.source_north_shift_min/km, self.source_north_shift_max/km, self.source_north_shift_delta/km)
[docs]class Weighting(Object): factor = Float.T(default=1.0)
[docs]class Taper(Object): tmin = Timing.T() tmax = Timing.T() tfade = Float.T(default=0.0) shape = StringChoice.T( choices=['cos', 'linear'], default='cos', optional=True)
[docs]class SimplePattern(SObject): _pool = {} def __init__(self, pattern): self._pattern = pattern SObject.__init__(self) def __str__(self): return self._pattern @property def regex(self): pool = SimplePattern._pool if self.pattern not in pool: rpat = '|'.join(fnmatch.translate(x) for x in self.pattern.split('|')) pool[self.pattern] = re.compile(rpat, re.I) return pool[self.pattern] def match(self, s): return self.regex.match(s)
[docs]class WaveformType(StringChoice): choices = ['dis', 'vel', 'acc', 'amp_spec_dis', 'amp_spec_vel', 'amp_spec_acc', 'envelope_dis', 'envelope_vel', 'envelope_acc']
[docs]class ChannelSelection(Object): pattern = SimplePattern.T(optional=True) min_sample_rate = Float.T(optional=True) max_sample_rate = Float.T(optional=True)
[docs]class StationSelection(Object): includes = SimplePattern.T() excludes = SimplePattern.T() distance_min = Float.T(optional=True) distance_max = Float.T(optional=True) azimuth_min = Float.T(optional=True) azimuth_max = Float.T(optional=True)
[docs]class WaveformSelection(Object): channel_selection = ChannelSelection.T(optional=True) station_selection = StationSelection.T(optional=True) taper = Taper.T() # filter = FrequencyResponse.T() waveform_type = WaveformType.T(default='dis') weighting = Weighting.T(optional=True) sample_rate = Float.T(optional=True) gf_store_id = StringID.T(optional=True)
def indi12(x, n): ''' Get linear interpolation index and weight. ''' r = round(x) if abs(r - x) < vicinity_eps: i = int(r) if not (0 <= i < n): raise OutOfBounds() return ((int(r), 1.),) else: f = math.floor(x) i = int(f) if not (0 <= i < n-1): raise OutOfBounds() v = x-f return ((i, 1.-v), (i + 1, v)) def float_or_none(s): units = { 'k': 1e3, 'M': 1e6, } factor = 1.0 if s and s[-1] in units: factor = units[s[-1]] s = s[:-1] if not s: raise ValueError('unit without a number: \'%s\'' % s) if s: return float(s) * factor else: return None
[docs]class GridSpecError(Exception): def __init__(self, s): Exception.__init__(self, 'invalid grid specification: %s' % s)
def parse_grid_spec(spec): try: result = [] for dspec in spec.split(','): t = dspec.split('@') num = start = stop = step = None if len(t) == 2: num = int(t[1]) if num <= 0: raise GridSpecError(spec) elif len(t) > 2: raise GridSpecError(spec) s = t[0] v = [float_or_none(x) for x in s.split(':')] if len(v) == 1: start = stop = v[0] if len(v) >= 2: start, stop = v[0:2] if len(v) == 3: step = v[2] if len(v) > 3 or (len(v) > 2 and num is not None): raise GridSpecError(spec) if step == 0.0: raise GridSpecError(spec) result.append((start, stop, step, num)) except ValueError: raise GridSpecError(spec) return result def start_stop_num(start, stop, step, num, mi, ma, inc, eps=1e-5): swap = step is not None and step < 0. if start is None: start = [mi, ma][swap] if stop is None: stop = [ma, mi][swap] if step is None: step = [inc, -inc][ma < mi] if num is None: if (step < 0) != (stop-start < 0): raise GridSpecError() num = int(round((stop-start)/step))+1 stop2 = start + (num-1)*step if abs(stop-stop2) > eps: num = int(math.floor((stop-start)/step))+1 stop = start + (num-1)*step else: stop = stop2 if start == stop: num = 1 return start, stop, num def nditer_outer(x): return num.nditer( x, op_axes=(num.identity(len(x), dtype=num.int)-1).tolist()) def nodes(xs): ns = [x.size for x in xs] nnodes = num.prod(ns) ndim = len(xs) nodes = num.empty((nnodes, ndim), dtype=xs[0].dtype) for idim in range(ndim-1, -1, -1): x = xs[idim] nrepeat = num.prod(ns[idim+1:], dtype=num.int) ntile = num.prod(ns[:idim], dtype=num.int) nodes[:, idim] = num.repeat(num.tile(x, ntile), nrepeat) return nodes def filledi(x, n): a = num.empty(n, dtype=num.int) a.fill(x) return a config_type_classes = [ConfigTypeA, ConfigTypeB, ConfigTypeC] discretized_source_classes = [ DiscretizedExplosionSource, DiscretizedSFSource, DiscretizedMTSource, DiscretizedPorePressureSource] __all__ = ''' Earthmodel1D StringID ScopeType WaveformType QuantityType NearfieldTermsType Reference Region CircularRegion RectangularRegion PhaseSelect InvalidTimingSpecification Timing TPDef OutOfBounds Location Receiver '''.split() + [ S.__name__ for S in discretized_source_classes + config_type_classes] + ''' ComponentScheme component_scheme_to_description component_schemes Config GridSpecError Weighting Taper SimplePattern WaveformType ChannelSelection StationSelection WaveformSelection nditer_outer dump load discretized_source_classes config_type_classes UnavailableScheme InterpolationMethod SeismosizerTrace SeismosizerResult Result StaticResult '''.split()