1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

import math 

import logging 

 

import numpy as num 

 

from matplotlib import pyplot as plt 

 

from pyrocko.guts import Float, Bool, Tuple 

 

from pyrocko.plot import automap, mpl_init, beachball, mpl_color 

 

from grond import stats 

from grond.plot.collection import PlotItem 

from grond.plot.config import PlotConfig 

 

logger = logging.getLogger('grond.problem.double_sf.plot') 

 

guts_prefix = 'grond' 

 

km = 1e3 

 

 

class SFForcePlot(PlotConfig): 

''' Maps showing horizontal and vertical force 

of the best double single force model ''' 

 

name = 'forces_double_singleforce' 

 

size_cm = Tuple.T( 

2, Float.T(), 

default=(15., 15.), 

help='width and length of the figure in cm') 

show_topo = Bool.T( 

default=False, 

help='show topography') 

show_grid = Bool.T( 

default=True, 

help='show the lat/lon grid') 

show_rivers = Bool.T( 

default=True, 

help='show rivers on the map') 

radius = Float.T( 

optional=True, 

help='radius of the map around campaign center lat/lon') 

 

def make(self, environ): 

cm = environ.get_plot_collection_manager() 

history = environ.get_history(subset='harvest') 

optimiser = environ.get_optimiser() 

ds = environ.get_dataset() 

 

environ.setup_modelling() 

 

cm.create_group_automap( 

self, 

self.draw_best_sf(ds, history, optimiser), 

title=u'Single Force Source Forces', 

section='solution', 

feather_icon='map', 

description=u''' 

Maps show located force vectors of the best double Single Force Source model. 

 

Arrows show the modelled forces (red arrows). The top plot shows the horizontal 

forces and the bottom plot the vertical force. The dot indicates the location 

of the best double single force source model. 

''') 

 

def draw_best_sf(self, ds, history, optimiser, vertical=False): 

from grond.core import make_stats 

 

source = history.get_best_source() 

 

problem = history.problem 

models = history.models 

 

stats = make_stats( 

problem, models, history.get_primary_chain_misfits()) 

 

def plot_double_sf(source, stats, ifig, vertical=False): 

orient = 'vertical' if vertical else 'horizontal' 

 

item = PlotItem( 

name='fig_%i' % ifig, 

attributes={}, 

title=u'Best %s double single force model force vector' % ( 

orient), 

description=u''' 

Double single force source %s force vector for the best model (red). The circle 

shows the 95%% confidence ellipse. Orange points indicate the location of each 

individual single force, while the square shows the combined centroid location. 

''' % orient) 

 

event = source.pyrocko_event() 

 

radius = self.radius 

if radius is None or radius < 30.*km: 

logger.warn( 

'Radius too small, defaulting to 30 km') 

radius = 30*km 

 

m = automap.Map( 

width=self.size_cm[0], 

height=self.size_cm[1], 

lat=event.effective_lat, 

lon=event.effective_lon, 

radius=radius, 

show_topo=self.show_topo, 

show_grid=self.show_grid, 

show_rivers=self.show_rivers, 

color_wet=(216, 242, 254), 

color_dry=(238, 236, 230)) 

 

offset_scale = source.force 

size = num.linalg.norm(self.size_cm) 

 

scale = (size / 5.) / offset_scale 

 

source.lat, source.lon = event.effective_lat, event.effective_lon 

sf1, sf2 = source.split() 

 

stats_dict = stats.get_values_dict() 

 

if vertical: 

rows = [[ 

sf1.effective_lon, sf1.effective_lat, 

0., -sf1.fd * scale, 

(stats_dict['rfn1.std'] + stats_dict['rfe1.std']), 

stats_dict['rfd1.std'], 

0.]] 

 

rows.append([ 

sf2.effective_lon, sf2.effective_lat, 

0., -sf2.fd * scale, 

(stats_dict['rfn2.std'] + stats_dict['rfe2.std']), 

stats_dict['rfd2.std'], 

0.]) 

 

else: 

rows = [[ 

sf1.effective_lon, sf1.effective_lat, 

sf1.fe * scale, sf1.fn * scale, 

stats_dict['rfe1.std'], 

stats_dict['rfn1.std'], 

0.]] 

 

rows.append([ 

sf2.effective_lon, sf2.effective_lat, 

sf2.fe * scale, sf2.fn * scale, 

stats_dict['rfe2.std'], 

stats_dict['rfn2.std'], 

0.]) 

 

fontsize = 10. 

 

default_psxy_style = { 

'h': 0, 

'W': '2.0p,red', 

'A': '+p4p,black+e+a40', 

'G': 'red', 

't': 30, 

'L': True, 

'S': 'e1c/0.95/%d' % fontsize, 

} 

 

m.gmt.psvelo( 

in_rows=rows, 

*m.jxyr, 

**default_psxy_style) 

 

m.gmt.psxy( 

S='c8p', 

in_rows=[ 

[sf.effective_lon, sf.effective_lat] for sf in (sf1, sf2)], 

W='1p,black', 

G='orange3', 

*m.jxyr) 

 

m.gmt.psxy( 

S='s8p', 

in_rows=[[source.effective_lon, source.effective_lat]], 

W='1p,black', 

G='slategray3', 

*m.jxyr) 

 

return (item, m) 

 

ifig = 0 

for vertical in (False, True): 

yield plot_double_sf(source, stats, ifig, vertical) 

ifig += 1 

 

 

class DoubleSFDecompositionPlot(PlotConfig): 

''' 

Double Single Force decomposition plot. 

''' 

 

name = 'sf_decomposition' 

size_cm = Tuple.T(2, Float.T(), default=(15., 5.)) 

 

def make(self, environ): 

cm = environ.get_plot_collection_manager() 

history = environ.get_history(subset='harvest') 

mpl_init(fontsize=self.font_size) 

cm.create_group_mpl( 

self, 

self.draw_figures(history), 

title=u'Single Force Decomposition', 

section='solution', 

feather_icon='sun', 

description=u''' 

Double Single Force decomposition of the best-fitting solution into its single 

force components. 

 

Shown are the ensemble best and the ensemble mean. The symbol size indicates 

the relative strength of the components. The inversion result is consistent 

and stable if ensemble mean and ensemble 

best have similar symbol size and patterns. 

''') 

 

def draw_figures(self, history): 

 

fontsize = self.font_size 

 

fig = plt.figure(figsize=self.size_inch) 

axes = fig.add_subplot(1, 1, 1, aspect=1.0) 

fig.subplots_adjust(left=0., right=1., bottom=0., top=1.) 

 

problem = history.problem 

models = history.models 

 

if models.size == 0: 

logger.warn('Empty models vector.') 

return [] 

 

# ref_source = problem.base_source 

 

mean_source = stats.get_mean_source( 

problem, history.models) 

 

best_source = history.get_best_source() 

 

nlines_max = int(round(self.size_cm[1] / 5. * 4. - 1.0)) 

 

def get_deco(source): 

return [source] + source.split() 

 

lines = [] 

lines.append( 

('Ensemble best', get_deco(best_source), mpl_color('aluminium5'))) 

 

lines.append( 

('Ensemble mean', get_deco(mean_source), mpl_color('aluminium5'))) 

 

force_max = max(sf.force for (_, line, _) in lines for sf in line) 

 

for xpos, label in [ 

(0., 'Double SF'), 

(2., 'SF 1'), 

(4., 'SF 2')]: 

 

axes.annotate( 

label, 

xy=(1 + xpos, nlines_max), 

xycoords='data', 

xytext=(0., 0.), 

textcoords='offset points', 

ha='center', 

va='center', 

color='black', 

fontsize=fontsize) 

 

for i, (label, deco, color_t) in enumerate(lines): 

ypos = nlines_max - i - 1.0 

 

[dsf, sf1, sf2] = deco 

 

size0 = dsf.force / force_max 

 

axes.annotate( 

label, 

xy=(-2., ypos), 

xycoords='data', 

xytext=(0., 0.), 

textcoords='offset points', 

ha='left', 

va='center', 

color='black', 

fontsize=fontsize) 

 

for xpos, sf_part, ratio, ops in [ 

(0., dsf, 1., '='), 

(2., sf1, sf1.force / force_max, '+'), 

(4., sf2, sf2.force / force_max, None)]: 

 

if ratio > 1e-4: 

try: 

beachball.plot_singleforce_beachball_mpl( 

sf_part.fn, sf_part.fe, sf_part.fd, axes, 

position=(1. + xpos, ypos), 

size=0.9 * size0 * math.sqrt(ratio), 

size_units='data', 

color_t=color_t, 

linewidth=1.0) 

 

except beachball.BeachballError as e: 

logger.warn(str(e)) 

 

axes.annotate( 

'ERROR', 

xy=(1. + xpos, ypos), 

ha='center', 

va='center', 

color='red', 

fontsize=fontsize) 

 

else: 

axes.annotate( 

'N/A', 

xy=(1. + xpos, ypos), 

ha='center', 

va='center', 

color='black', 

fontsize=fontsize) 

 

if ops is not None: 

axes.annotate( 

ops, 

xy=(2. + xpos, ypos), 

ha='center', 

va='center', 

color='black', 

fontsize=fontsize) 

 

axes.axison = False 

axes.set_xlim(-2.25, 9.75) 

axes.set_ylim(-0.5, nlines_max+0.5) 

 

item = PlotItem(name='main') 

return [[item, fig]]