1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

import numpy as num 

import logging 

 

from pyrocko import gf, util 

from pyrocko.guts import String, Float, Dict, StringChoice, Int 

 

from grond.meta import Forbidden, expand_template, Parameter, \ 

has_get_plot_classes 

 

from ..base import Problem, ProblemConfig 

 

guts_prefix = 'grond' 

logger = logging.getLogger('grond.problems.double_sf.problem') 

km = 1e3 

as_km = dict(scale_factor=km, scale_unit='km') 

 

 

class DoubleSFProblemConfig(ProblemConfig): 

 

ranges = Dict.T(String.T(), gf.Range.T()) 

distance_min = Float.T(default=0.0) 

nthreads = Int.T(default=1) 

force_directions = StringChoice.T( 

choices=('off', 'unidirectional', 'counterdirectional'), 

default='off') 

 

def get_problem(self, event, target_groups, targets): 

if event.depth is None: 

event.depth = 0. 

 

base_source = gf.DoubleSFSource.from_pyrocko_event(event) 

 

base_source.stf1 = gf.HalfSinusoidSTF(duration=event.duration or 0.0) 

base_source.stf2 = gf.HalfSinusoidSTF(duration=event.duration or 0.0) 

 

subs = dict( 

event_name=event.name, 

event_time=util.time_to_str(event.time)) 

 

problem = DoubleSFProblem( 

name=expand_template(self.name_template, subs), 

base_source=base_source, 

target_groups=target_groups, 

targets=targets, 

ranges=self.ranges, 

distance_min=self.distance_min, 

norm_exponent=self.norm_exponent, 

nthreads=self.nthreads, 

force_directions=self.force_directions) 

 

return problem 

 

 

@has_get_plot_classes 

class DoubleSFProblem(Problem): 

 

problem_parameters = [ 

Parameter('time', 's', label='Time'), 

Parameter('north_shift', 'm', label='Northing', **as_km), 

Parameter('east_shift', 'm', label='Easting', **as_km), 

Parameter('depth', 'm', label='Depth', **as_km), 

Parameter('force', 'N', label='$||F||$'), 

Parameter('rfn1', '', label='$rF_{n1}$'), 

Parameter('rfe1', '', label='$rF_{e1}$'), 

Parameter('rfd1', '', label='$rF_{d1}$'), 

Parameter('rfn2', '', label='$rF_{n2}$'), 

Parameter('rfe2', '', label='$rF_{e2}$'), 

Parameter('rfd2', '', label='$rF_{d2}$'), 

Parameter('delta_time', 's', label='$\\Delta$ Time'), 

Parameter('delta_depth', 'm', label='$\\Delta$ Depth'), 

Parameter('azimuth', 'deg', label='Azimuth'), 

Parameter('distance', 'm', label='Distance'), 

Parameter('mix', label='Mix'), 

Parameter('duration1', 's', label='Duration 1'), 

Parameter('duration2', 's', label='Duration 2')] 

 

dependants = [ 

Parameter('fn1', 'N', label='$F_{n1}$'), 

Parameter('fe1', 'N', label='$F_{e1}$'), 

Parameter('fd1', 'N', label='$F_{d1}$'), 

Parameter('fn2', 'N', label='$F_{n2}$'), 

Parameter('fe2', 'N', label='$F_{e2}$'), 

Parameter('fd2', 'N', label='$F_{d2}$')] 

 

distance_min = Float.T(default=0.0) 

force_directions = String.T() 

 

def __init__(self, **kwargs): 

Problem.__init__(self, **kwargs) 

self.deps_cache = {} 

 

def get_source(self, x): 

d = self.get_parameter_dict(x) 

 

p = {} 

for k in self.base_source.keys(): 

if k in d: 

p[k] = float( 

self.ranges[k].make_relative(self.base_source[k], d[k])) 

 

stf1 = gf.HalfSinusoidSTF(duration=float(d.duration1)) 

stf2 = gf.HalfSinusoidSTF(duration=float(d.duration2)) 

 

source = self.base_source.clone(stf1=stf1, stf2=stf2, **p) 

return source 

 

def make_dependant(self, xs, pname): 

cache = self.deps_cache 

if xs.ndim == 1: 

return self.make_dependant(xs[num.newaxis, :], pname)[0] 

 

if pname not in self.dependant_names: 

raise KeyError(pname) 

 

y = num.zeros(xs.shape[0]) 

for i, x in enumerate(xs): 

k = tuple(x.tolist()) 

if k not in cache: 

source = self.get_source(x) 

cache[k] = source 

 

source = cache[k] 

 

y[i] = getattr(source, pname) 

 

return y 

 

def pack(self, source): 

arr = self.get_parameter_array(source) 

for ip, p in enumerate(self.parameters): 

if p.name == 'time': 

arr[ip] -= self.base_source.time 

if p.name == 'duration1': 

arr[ip] = source.stf1.duration if source.stf1 else 0.0 

if p.name == 'duration2': 

arr[ip] = source.stf2.duration if source.stf2 else 0.0 

return arr 

 

def random_uniform(self, xbounds, rstate, fixed_magnitude=None): 

 

x = num.zeros(self.nparameters) 

for i in range(self.nparameters): 

x[i] = rstate.uniform(xbounds[i, 0], xbounds[i, 1]) 

 

return x.tolist() 

 

def preconstrain(self, x): 

source = self.get_source(x) 

if any(self.distance_min > source.distance_to(t) 

for t in self.targets): 

raise Forbidden() 

 

if self.force_directions == 'unidirectional': 

idx_rfn2 = self.get_parameter_index('rfn2') 

idx_rfe2 = self.get_parameter_index('rfe2') 

idx_rfd2 = self.get_parameter_index('rfd2') 

 

x[idx_rfn2] = source.rfn1 

x[idx_rfe2] = source.rfe1 

x[idx_rfd2] = source.rfd1 

 

elif self.force_directions == 'counterdirectional': 

idx_rfn2 = self.get_parameter_index('rfn2') 

idx_rfe2 = self.get_parameter_index('rfe2') 

idx_rfd2 = self.get_parameter_index('rfd2') 

 

x[idx_rfn2] = -source.rfn1 

x[idx_rfe2] = -source.rfe1 

x[idx_rfd2] = -source.rfd1 

 

return num.array(x, dtype=num.float) 

 

def get_dependant_bounds(self): 

range_force = self.ranges['force'] 

out = [ 

(-range_force.stop, range_force.stop), 

(-range_force.stop, range_force.stop), 

(-range_force.stop, range_force.stop), 

(-range_force.stop, range_force.stop), 

(-range_force.stop, range_force.stop), 

(-range_force.stop, range_force.stop)] 

 

return out 

 

@classmethod 

def get_plot_classes(cls): 

from . import plot 

from ..singleforce import plot as sfplot 

plots = super(DoubleSFProblem, cls).get_plot_classes() 

plots.extend([ 

sfplot.SFLocationPlot, 

plot.SFForcePlot, 

plot.DoubleSFDecompositionPlot]) 

return plots 

 

 

__all__ = ''' 

DoubleSFProblem 

DoubleSFProblemConfig 

'''.split()