1# http://pyrocko.org - GPLv3 

2# 

3# The Pyrocko Developers, 21st Century 

4# ---|P------/S----------~Lg---------- 

5from __future__ import absolute_import, print_function 

6 

7import math 

8import random 

9import logging 

10 

11try: 

12 from StringIO import StringIO as BytesIO 

13except ImportError: 

14 from io import BytesIO 

15 

16import numpy as num 

17 

18from pyrocko.guts import (Object, Float, Bool, Int, Tuple, String, List, 

19 Unicode, Dict) 

20from pyrocko.guts_array import Array 

21from pyrocko.dataset import topo 

22from pyrocko import orthodrome as od 

23from . import gmtpy 

24 

25try: 

26 newstr = unicode 

27except NameError: 

28 newstr = str 

29 

30points_in_region = od.points_in_region 

31 

32logger = logging.getLogger('pyrocko.plot.automap') 

33 

34earthradius = 6371000.0 

35r2d = 180./math.pi 

36d2r = 1./r2d 

37km = 1000. 

38d2m = d2r*earthradius 

39m2d = 1./d2m 

40cm = gmtpy.cm 

41 

42 

43def darken(c, f=0.7): 

44 return (c[0]*f, c[1]*f, c[2]*f) 

45 

46 

47def corners(lon, lat, w, h): 

48 ll_lat, ll_lon = od.ne_to_latlon(lat, lon, -0.5*h, -0.5*w) 

49 ur_lat, ur_lon = od.ne_to_latlon(lat, lon, 0.5*h, 0.5*w) 

50 return ll_lon, ll_lat, ur_lon, ur_lat 

51 

52 

53def extent(lon, lat, w, h, n): 

54 x = num.linspace(-0.5*w, 0.5*w, n) 

55 y = num.linspace(-0.5*h, 0.5*h, n) 

56 slats, slons = od.ne_to_latlon(lat, lon, y[0], x) 

57 nlats, nlons = od.ne_to_latlon(lat, lon, y[-1], x) 

58 south = slats.min() 

59 north = nlats.max() 

60 

61 wlats, wlons = od.ne_to_latlon(lat, lon, y, x[0]) 

62 elats, elons = od.ne_to_latlon(lat, lon, y, x[-1]) 

63 elons = num.where(elons < wlons, elons + 360., elons) 

64 

65 if elons.max() - elons.min() > 180 or wlons.max() - wlons.min() > 180.: 

66 west = -180. 

67 east = 180. 

68 else: 

69 west = wlons.min() 

70 east = elons.max() 

71 

72 return topo.positive_region((west, east, south, north)) 

73 

74 

75class NoTopo(Exception): 

76 pass 

77 

78 

79class OutOfBounds(Exception): 

80 pass 

81 

82 

83class FloatTile(Object): 

84 xmin = Float.T() 

85 ymin = Float.T() 

86 dx = Float.T() 

87 dy = Float.T() 

88 data = Array.T(shape=(None, None), dtype=float, serialize_as='table') 

89 

90 def __init__(self, xmin, ymin, dx, dy, data): 

91 Object.__init__(self, init_props=False) 

92 self.xmin = float(xmin) 

93 self.ymin = float(ymin) 

94 self.dx = float(dx) 

95 self.dy = float(dy) 

96 self.data = data 

97 self._set_maxes() 

98 

99 def _set_maxes(self): 

100 self.ny, self.nx = self.data.shape 

101 self.xmax = self.xmin + (self.nx-1) * self.dx 

102 self.ymax = self.ymin + (self.ny-1) * self.dy 

103 

104 def x(self): 

105 return self.xmin + num.arange(self.nx) * self.dx 

106 

107 def y(self): 

108 return self.ymin + num.arange(self.ny) * self.dy 

109 

110 def get(self, x, y): 

111 ix = int(round((x - self.xmin) / self.dx)) 

112 iy = int(round((y - self.ymin) / self.dy)) 

113 if 0 <= ix < self.nx and 0 <= iy < self.ny: 

114 return self.data[iy, ix] 

115 else: 

116 raise OutOfBounds() 

117 

118 

119class City(Object): 

120 def __init__(self, name, lat, lon, population=None, asciiname=None): 

121 name = newstr(name) 

122 lat = float(lat) 

123 lon = float(lon) 

124 if asciiname is None: 

125 asciiname = name.encode('ascii', errors='replace') 

126 

127 if population is None: 

128 population = 0 

129 else: 

130 population = int(population) 

131 

132 Object.__init__(self, name=name, lat=lat, lon=lon, 

133 population=population, asciiname=asciiname) 

134 

135 name = Unicode.T() 

136 lat = Float.T() 

137 lon = Float.T() 

138 population = Int.T() 

139 asciiname = String.T() 

140 

141 

142class Map(Object): 

143 lat = Float.T(optional=True) 

144 lon = Float.T(optional=True) 

145 radius = Float.T(optional=True) 

146 width = Float.T(default=20.) 

147 height = Float.T(default=14.) 

148 margins = List.T(Float.T()) 

149 illuminate = Bool.T(default=True) 

150 skip_feature_factor = Float.T(default=0.02) 

151 show_grid = Bool.T(default=False) 

152 show_topo = Bool.T(default=True) 

153 show_scale = Bool.T(default=False) 

154 show_topo_scale = Bool.T(default=False) 

155 show_center_mark = Bool.T(default=False) 

156 show_rivers = Bool.T(default=True) 

157 show_plates = Bool.T(default=False) 

158 show_plate_names = Bool.T(default=False) 

159 show_plate_velocities = Bool.T(default=False) 

160 show_boundaries = Bool.T(default=False) 

161 illuminate_factor_land = Float.T(default=0.5) 

162 illuminate_factor_ocean = Float.T(default=0.25) 

163 color_wet = Tuple.T(3, Int.T(), default=(216, 242, 254)) 

164 color_dry = Tuple.T(3, Int.T(), default=(172, 208, 165)) 

165 color_boundaries = Tuple.T(3, Int.T(), default=(1, 1, 1)) 

166 topo_resolution_min = Float.T( 

167 default=40., 

168 help='minimum resolution of topography [dpi]') 

169 topo_resolution_max = Float.T( 

170 default=200., 

171 help='maximum resolution of topography [dpi]') 

172 replace_topo_color_only = FloatTile.T( 

173 optional=True, 

174 help='replace topo color while keeping topographic shading') 

175 topo_cpt_wet = String.T(default='light_sea') 

176 topo_cpt_dry = String.T(default='light_land') 

177 axes_layout = String.T(optional=True) 

178 custom_cities = List.T(City.T()) 

179 gmt_config = Dict.T(String.T(), String.T()) 

180 comment = String.T(optional=True) 

181 

182 def __init__(self, gmtversion='newest', **kwargs): 

183 Object.__init__(self, **kwargs) 

184 self._gmt = None 

185 self._scaler = None 

186 self._widget = None 

187 self._corners = None 

188 self._wesn = None 

189 self._minarea = None 

190 self._coastline_resolution = None 

191 self._rivers = None 

192 self._dems = None 

193 self._have_topo_land = None 

194 self._have_topo_ocean = None 

195 self._jxyr = None 

196 self._prep_topo_have = None 

197 self._labels = [] 

198 self._area_labels = [] 

199 self._gmtversion = gmtversion 

200 

201 def save(self, outpath, resolution=75., oversample=2., size=None, 

202 width=None, height=None, psconvert=False): 

203 

204 ''' 

205 Save the image. 

206 

207 Save the image to ``outpath``. The format is determined by the filename 

208 extension. Formats are handled as follows: ``'.eps'`` and ``'.ps'`` 

209 produce EPS and PS, respectively, directly with GMT. If the file name 

210 ends with ``'.pdf'``, GMT output is fed through ``gmtpy-epstopdf`` to 

211 create a PDF file. For any other filename extension, output is first 

212 converted to PDF with ``gmtpy-epstopdf``, then with ``pdftocairo`` to 

213 PNG with a resolution oversampled by the factor ``oversample`` and 

214 finally the PNG is downsampled and converted to the target format with 

215 ``convert``. The resolution of rasterized target image can be 

216 controlled either by ``resolution`` in DPI or by specifying ``width`` 

217 or ``height`` or ``size``, where the latter fits the image into a 

218 square with given side length. To save transparency use 

219 ``psconvert=True``. 

220 ''' 

221 

222 gmt = self.gmt 

223 self.draw_labels() 

224 self.draw_axes() 

225 if self.show_topo and self.show_topo_scale: 

226 self._draw_topo_scale() 

227 

228 gmt.save(outpath, resolution=resolution, oversample=oversample, 

229 size=size, width=width, height=height, psconvert=psconvert) 

230 

231 @property 

232 def scaler(self): 

233 if self._scaler is None: 

234 self._setup_geometry() 

235 

236 return self._scaler 

237 

238 @property 

239 def wesn(self): 

240 if self._wesn is None: 

241 self._setup_geometry() 

242 

243 return self._wesn 

244 

245 @property 

246 def widget(self): 

247 if self._widget is None: 

248 self._setup() 

249 

250 return self._widget 

251 

252 @property 

253 def layout(self): 

254 if self._layout is None: 

255 self._setup() 

256 

257 return self._layout 

258 

259 @property 

260 def jxyr(self): 

261 if self._jxyr is None: 

262 self._setup() 

263 

264 return self._jxyr 

265 

266 @property 

267 def pxyr(self): 

268 if self._pxyr is None: 

269 self._setup() 

270 

271 return self._pxyr 

272 

273 @property 

274 def gmt(self): 

275 if self._gmt is None: 

276 self._setup() 

277 

278 if self._have_topo_ocean is None: 

279 self._draw_background() 

280 

281 return self._gmt 

282 

283 def _setup(self): 

284 if not self._widget: 

285 self._setup_geometry() 

286 

287 self._setup_lod() 

288 self._setup_gmt() 

289 

290 def _setup_geometry(self): 

291 wpage, hpage = self.width, self.height 

292 ml, mr, mt, mb = self._expand_margins() 

293 wpage -= ml + mr 

294 hpage -= mt + mb 

295 

296 wreg = self.radius * 2.0 

297 hreg = self.radius * 2.0 

298 if wpage >= hpage: 

299 wreg *= wpage/hpage 

300 else: 

301 hreg *= hpage/wpage 

302 

303 self._wreg = wreg 

304 self._hreg = hreg 

305 

306 self._corners = corners(self.lon, self.lat, wreg, hreg) 

307 west, east, south, north = extent(self.lon, self.lat, wreg, hreg, 10) 

308 

309 x, y, z = ((west, east), (south, north), (-6000., 4500.)) 

310 

311 xax = gmtpy.Ax(mode='min-max', approx_ticks=4.) 

312 yax = gmtpy.Ax(mode='min-max', approx_ticks=4.) 

313 zax = gmtpy.Ax(mode='min-max', inc=1000., label='Height', 

314 scaled_unit='km', scaled_unit_factor=0.001) 

315 

316 scaler = gmtpy.ScaleGuru(data_tuples=[(x, y, z)], axes=(xax, yax, zax)) 

317 

318 par = scaler.get_params() 

319 

320 west = par['xmin'] 

321 east = par['xmax'] 

322 south = par['ymin'] 

323 north = par['ymax'] 

324 

325 self._wesn = west, east, south, north 

326 self._scaler = scaler 

327 

328 def _setup_lod(self): 

329 w, e, s, n = self._wesn 

330 if self.radius > 1500.*km: 

331 coastline_resolution = 'i' 

332 rivers = False 

333 else: 

334 coastline_resolution = 'f' 

335 rivers = True 

336 

337 self._minarea = (self.skip_feature_factor * self.radius/km)**2 

338 

339 self._coastline_resolution = coastline_resolution 

340 self._rivers = rivers 

341 

342 self._prep_topo_have = {} 

343 self._dems = {} 

344 

345 cm2inch = gmtpy.cm/gmtpy.inch 

346 

347 dmin = 2.0 * self.radius * m2d / (self.topo_resolution_max * 

348 (self.height * cm2inch)) 

349 dmax = 2.0 * self.radius * m2d / (self.topo_resolution_min * 

350 (self.height * cm2inch)) 

351 

352 for k in ['ocean', 'land']: 

353 self._dems[k] = topo.select_dem_names(k, dmin, dmax, self._wesn) 

354 if self._dems[k]: 

355 logger.debug('using topography dataset %s for %s' 

356 % (','.join(self._dems[k]), k)) 

357 

358 def _expand_margins(self): 

359 if len(self.margins) == 0 or len(self.margins) > 4: 

360 ml = mr = mt = mb = 2.0 

361 elif len(self.margins) == 1: 

362 ml = mr = mt = mb = self.margins[0] 

363 elif len(self.margins) == 2: 

364 ml = mr = self.margins[0] 

365 mt = mb = self.margins[1] 

366 elif len(self.margins) == 4: 

367 ml, mr, mt, mb = self.margins 

368 

369 return ml, mr, mt, mb 

370 

371 def _setup_gmt(self): 

372 w, h = self.width, self.height 

373 scaler = self._scaler 

374 

375 if gmtpy.is_gmt5(self._gmtversion): 

376 gmtconf = dict( 

377 MAP_TICK_PEN_PRIMARY='1.25p', 

378 MAP_TICK_PEN_SECONDARY='1.25p', 

379 MAP_TICK_LENGTH_PRIMARY='0.2c', 

380 MAP_TICK_LENGTH_SECONDARY='0.6c', 

381 FONT_ANNOT_PRIMARY='12p,1,black', 

382 FONT_LABEL='12p,1,black', 

383 PS_CHAR_ENCODING='ISOLatin1+', 

384 MAP_FRAME_TYPE='fancy', 

385 FORMAT_GEO_MAP='D', 

386 PS_MEDIA='Custom_%ix%i' % ( 

387 w*gmtpy.cm, 

388 h*gmtpy.cm), 

389 PS_PAGE_ORIENTATION='portrait', 

390 MAP_GRID_PEN_PRIMARY='thinnest,0/50/0', 

391 MAP_ANNOT_OBLIQUE='6') 

392 else: 

393 gmtconf = dict( 

394 TICK_PEN='1.25p', 

395 TICK_LENGTH='0.2c', 

396 ANNOT_FONT_PRIMARY='1', 

397 ANNOT_FONT_SIZE_PRIMARY='12p', 

398 LABEL_FONT='1', 

399 LABEL_FONT_SIZE='12p', 

400 CHAR_ENCODING='ISOLatin1+', 

401 BASEMAP_TYPE='fancy', 

402 PLOT_DEGREE_FORMAT='D', 

403 PAPER_MEDIA='Custom_%ix%i' % ( 

404 w*gmtpy.cm, 

405 h*gmtpy.cm), 

406 GRID_PEN_PRIMARY='thinnest/0/50/0', 

407 DOTS_PR_INCH='1200', 

408 OBLIQUE_ANNOTATION='6') 

409 

410 gmtconf.update( 

411 (k.upper(), v) for (k, v) in self.gmt_config.items()) 

412 

413 gmt = gmtpy.GMT(config=gmtconf, version=self._gmtversion) 

414 

415 layout = gmt.default_layout() 

416 

417 layout.set_fixed_margins(*[x*cm for x in self._expand_margins()]) 

418 

419 widget = layout.get_widget() 

420 widget['P'] = widget['J'] 

421 widget['J'] = ('-JA%g/%g' % (self.lon, self.lat)) + '/%(width)gp' 

422 scaler['R'] = '-R%g/%g/%g/%gr' % self._corners 

423 

424 # aspect = gmtpy.aspect_for_projection( 

425 # gmt.installation['version'], *(widget.J() + scaler.R())) 

426 

427 aspect = self._map_aspect(jr=widget.J() + scaler.R()) 

428 widget.set_aspect(aspect) 

429 

430 self._gmt = gmt 

431 self._layout = layout 

432 self._widget = widget 

433 self._jxyr = self._widget.JXY() + self._scaler.R() 

434 self._pxyr = self._widget.PXY() + [ 

435 '-R%g/%g/%g/%g' % (0, widget.width(), 0, widget.height())] 

436 self._have_drawn_axes = False 

437 self._have_drawn_labels = False 

438 

439 def _draw_background(self): 

440 self._have_topo_land = False 

441 self._have_topo_ocean = False 

442 if self.show_topo: 

443 self._have_topo = self._draw_topo() 

444 

445 self._draw_basefeatures() 

446 

447 def _get_topo_tile(self, k): 

448 t = None 

449 demname = None 

450 for dem in self._dems[k]: 

451 t = topo.get(dem, self._wesn) 

452 demname = dem 

453 if t is not None: 

454 break 

455 

456 if not t: 

457 raise NoTopo() 

458 

459 return t, demname 

460 

461 def _prep_topo(self, k): 

462 gmt = self._gmt 

463 t, demname = self._get_topo_tile(k) 

464 

465 if demname not in self._prep_topo_have: 

466 

467 grdfile = gmt.tempfilename() 

468 

469 is_flat = num.all(t.data[0] == t.data) 

470 

471 gmtpy.savegrd( 

472 t.x(), t.y(), t.data, filename=grdfile, naming='lonlat') 

473 

474 if self.illuminate and not is_flat: 

475 if k == 'ocean': 

476 factor = self.illuminate_factor_ocean 

477 else: 

478 factor = self.illuminate_factor_land 

479 

480 ilumfn = gmt.tempfilename() 

481 gmt.grdgradient( 

482 grdfile, 

483 N='e%g' % factor, 

484 A=-45, 

485 G=ilumfn, 

486 out_discard=True) 

487 

488 ilumargs = ['-I%s' % ilumfn] 

489 else: 

490 ilumargs = [] 

491 

492 if self.replace_topo_color_only: 

493 t2 = self.replace_topo_color_only 

494 grdfile2 = gmt.tempfilename() 

495 

496 gmtpy.savegrd( 

497 t2.x(), t2.y(), t2.data, filename=grdfile2, 

498 naming='lonlat') 

499 

500 if gmt.is_gmt5(): 

501 gmt.grdsample( 

502 grdfile2, 

503 G=grdfile, 

504 n='l', 

505 I='%g/%g' % (t.dx, t.dy), # noqa 

506 R=grdfile, 

507 out_discard=True) 

508 else: 

509 gmt.grdsample( 

510 grdfile2, 

511 G=grdfile, 

512 Q='l', 

513 I='%g/%g' % (t.dx, t.dy), # noqa 

514 R=grdfile, 

515 out_discard=True) 

516 

517 gmt.grdmath( 

518 grdfile, '0.0', 'AND', '=', grdfile2, 

519 out_discard=True) 

520 

521 grdfile = grdfile2 

522 

523 self._prep_topo_have[demname] = grdfile, ilumargs 

524 

525 return self._prep_topo_have[demname] 

526 

527 def _draw_topo(self): 

528 widget = self._widget 

529 scaler = self._scaler 

530 gmt = self._gmt 

531 cres = self._coastline_resolution 

532 minarea = self._minarea 

533 

534 JXY = widget.JXY() 

535 R = scaler.R() 

536 

537 try: 

538 grdfile, ilumargs = self._prep_topo('ocean') 

539 gmt.pscoast(D=cres, S='c', A=minarea, *(JXY+R)) 

540 gmt.grdimage(grdfile, C=topo.cpt(self.topo_cpt_wet), 

541 *(ilumargs+JXY+R)) 

542 gmt.pscoast(Q=True, *(JXY+R)) 

543 self._have_topo_ocean = True 

544 except NoTopo: 

545 self._have_topo_ocean = False 

546 

547 try: 

548 grdfile, ilumargs = self._prep_topo('land') 

549 gmt.pscoast(D=cres, G='c', A=minarea, *(JXY+R)) 

550 gmt.grdimage(grdfile, C=topo.cpt(self.topo_cpt_dry), 

551 *(ilumargs+JXY+R)) 

552 gmt.pscoast(Q=True, *(JXY+R)) 

553 self._have_topo_land = True 

554 except NoTopo: 

555 self._have_topo_land = False 

556 

557 def _draw_topo_scale(self, label='Elevation [km]'): 

558 dry = read_cpt(topo.cpt(self.topo_cpt_dry)) 

559 wet = read_cpt(topo.cpt(self.topo_cpt_wet)) 

560 combi = cpt_merge_wet_dry(wet, dry) 

561 for level in combi.levels: 

562 level.vmin /= km 

563 level.vmax /= km 

564 

565 topo_cpt = self.gmt.tempfilename() + '.cpt' 

566 write_cpt(combi, topo_cpt) 

567 

568 (w, h), (xo, yo) = self.widget.get_size() 

569 self.gmt.psscale( 

570 D='%gp/%gp/%gp/%gph' % (xo + 0.5*w, yo - 2.0*gmtpy.cm, w, 

571 0.5*gmtpy.cm), 

572 C=topo_cpt, 

573 B='1:%s:' % label) 

574 

575 def _draw_basefeatures(self): 

576 gmt = self._gmt 

577 cres = self._coastline_resolution 

578 rivers = self._rivers 

579 minarea = self._minarea 

580 

581 color_wet = self.color_wet 

582 color_dry = self.color_dry 

583 

584 if self.show_rivers and rivers: 

585 rivers = ['-Ir/0.25p,%s' % gmtpy.color(self.color_wet)] 

586 else: 

587 rivers = [] 

588 

589 fill = {} 

590 if not self._have_topo_land: 

591 fill['G'] = color_dry 

592 

593 if not self._have_topo_ocean: 

594 fill['S'] = color_wet 

595 

596 if self.show_boundaries: 

597 fill['N'] = '1/1p,%s,%s' % ( 

598 gmtpy.color(self.color_boundaries), 'solid') 

599 

600 gmt.pscoast( 

601 D=cres, 

602 W='thinnest,%s' % gmtpy.color(darken(gmtpy.color_tup(color_dry))), 

603 A=minarea, 

604 *(rivers+self._jxyr), **fill) 

605 

606 if self.show_plates: 

607 self.draw_plates() 

608 

609 def _draw_axes(self): 

610 gmt = self._gmt 

611 scaler = self._scaler 

612 widget = self._widget 

613 

614 if self.axes_layout is None: 

615 if self.lat > 0.0: 

616 axes_layout = 'WSen' 

617 else: 

618 axes_layout = 'WseN' 

619 else: 

620 axes_layout = self.axes_layout 

621 

622 scale_km = gmtpy.nice_value(self.radius/5.) / 1000. 

623 

624 if self.show_center_mark: 

625 gmt.psxy( 

626 in_rows=[[self.lon, self.lat]], 

627 S='c20p', W='2p,black', 

628 *self._jxyr) 

629 

630 if self.show_grid: 

631 btmpl = ('%(xinc)gg%(xinc)g:%(xlabel)s:/' 

632 '%(yinc)gg%(yinc)g:%(ylabel)s:') 

633 else: 

634 btmpl = '%(xinc)g:%(xlabel)s:/%(yinc)g:%(ylabel)s:' 

635 

636 if self.show_scale: 

637 scale = 'x%gp/%gp/%g/%g/%gk' % ( 

638 6./7*widget.width(), 

639 widget.height()/7., 

640 self.lon, 

641 self.lat, 

642 scale_km) 

643 else: 

644 scale = False 

645 

646 gmt.psbasemap( 

647 B=(btmpl % scaler.get_params())+axes_layout, 

648 L=scale, 

649 *self._jxyr) 

650 

651 if self.comment: 

652 font_size = self.gmt.label_font_size() 

653 

654 _, east, south, _ = self._wesn 

655 if gmt.is_gmt5(): 

656 row = [ 

657 1, 0, 

658 '%gp,%s,%s' % (font_size, 0, 'black'), 'BR', 

659 self.comment] 

660 

661 farg = ['-F+f+j'] 

662 else: 

663 row = [1, 0, font_size, 0, 0, 'BR', self.comment] 

664 farg = [] 

665 

666 gmt.pstext( 

667 in_rows=[row], 

668 N=True, 

669 R=(0, 1, 0, 1), 

670 D='%gp/%gp' % (-font_size*0.2, font_size*0.3), 

671 *(widget.PXY() + farg)) 

672 

673 def draw_axes(self): 

674 if not self._have_drawn_axes: 

675 self._draw_axes() 

676 self._have_drawn_axes = True 

677 

678 def _have_coastlines(self): 

679 gmt = self._gmt 

680 cres = self._coastline_resolution 

681 minarea = self._minarea 

682 

683 checkfile = gmt.tempfilename() 

684 

685 gmt.pscoast( 

686 M=True, 

687 D=cres, 

688 W='thinnest,black', 

689 A=minarea, 

690 out_filename=checkfile, 

691 *self._jxyr) 

692 

693 points = [] 

694 with open(checkfile, 'r') as f: 

695 for line in f: 

696 ls = line.strip() 

697 if ls.startswith('#') or ls.startswith('>') or ls == '': 

698 continue 

699 plon, plat = [float(x) for x in ls.split()] 

700 points.append((plat, plon)) 

701 

702 points = num.array(points, dtype=float) 

703 return num.any(points_in_region(points, self._wesn)) 

704 

705 def have_coastlines(self): 

706 self.gmt 

707 return self._have_coastlines() 

708 

709 def project(self, lats, lons, jr=None): 

710 onepoint = False 

711 if isinstance(lats, float) and isinstance(lons, float): 

712 lats = [lats] 

713 lons = [lons] 

714 onepoint = True 

715 

716 if jr is not None: 

717 j, r = jr 

718 gmt = gmtpy.GMT(version=self._gmtversion) 

719 else: 

720 j, _, _, r = self.jxyr 

721 gmt = self.gmt 

722 

723 f = BytesIO() 

724 gmt.mapproject(j, r, in_columns=(lons, lats), out_stream=f, D='p') 

725 f.seek(0) 

726 data = num.loadtxt(f, ndmin=2) 

727 xs, ys = data.T 

728 if onepoint: 

729 xs = xs[0] 

730 ys = ys[0] 

731 return xs, ys 

732 

733 def _map_box(self, jr=None): 

734 ll_lon, ll_lat, ur_lon, ur_lat = self._corners 

735 

736 xs_corner, ys_corner = self.project( 

737 (ll_lat, ur_lat), (ll_lon, ur_lon), jr=jr) 

738 

739 w = xs_corner[1] - xs_corner[0] 

740 h = ys_corner[1] - ys_corner[0] 

741 

742 return w, h 

743 

744 def _map_aspect(self, jr=None): 

745 w, h = self._map_box(jr=jr) 

746 return h/w 

747 

748 def _draw_labels(self): 

749 points_taken = [] 

750 regions_taken = [] 

751 

752 def no_points_in_rect(xs, ys, xmin, ymin, xmax, ymax): 

753 xx = not num.any(la(la(xmin < xs, xs < xmax), 

754 la(ymin < ys, ys < ymax))) 

755 return xx 

756 

757 def roverlaps(a, b): 

758 return (a[0] < b[2] and b[0] < a[2] and 

759 a[1] < b[3] and b[1] < a[3]) 

760 

761 w, h = self._map_box() 

762 

763 label_font_size = self.gmt.label_font_size() 

764 

765 if self._labels: 

766 

767 n = len(self._labels) 

768 

769 lons, lats, texts, sx, sy, colors, fonts, font_sizes, \ 

770 angles, styles = list(zip(*self._labels)) 

771 

772 font_sizes = [ 

773 (font_size or label_font_size) for font_size in font_sizes] 

774 

775 sx = num.array(sx, dtype=float) 

776 sy = num.array(sy, dtype=float) 

777 

778 xs, ys = self.project(lats, lons) 

779 

780 points_taken.append((xs, ys)) 

781 

782 dxs = num.zeros(n) 

783 dys = num.zeros(n) 

784 

785 for i in range(n): 

786 dx, dy = gmtpy.text_box( 

787 texts[i], 

788 font=fonts[i], 

789 font_size=font_sizes[i], 

790 **styles[i]) 

791 

792 dxs[i] = dx 

793 dys[i] = dy 

794 

795 la = num.logical_and 

796 anchors_ok = ( 

797 la(xs + sx + dxs < w, ys + sy + dys < h), 

798 la(xs - sx - dxs > 0., ys - sy - dys > 0.), 

799 la(xs + sx + dxs < w, ys - sy - dys > 0.), 

800 la(xs - sx - dxs > 0., ys + sy + dys < h), 

801 ) 

802 

803 arects = [ 

804 (xs, ys, xs + sx + dxs, ys + sy + dys), 

805 (xs - sx - dxs, ys - sy - dys, xs, ys), 

806 (xs, ys - sy - dys, xs + sx + dxs, ys), 

807 (xs - sx - dxs, ys, xs, ys + sy + dys)] 

808 

809 for i in range(n): 

810 for ianch in range(4): 

811 anchors_ok[ianch][i] &= no_points_in_rect( 

812 xs, ys, *[xxx[i] for xxx in arects[ianch]]) 

813 

814 anchor_choices = [] 

815 anchor_take = [] 

816 for i in range(n): 

817 choices = [ianch for ianch in range(4) 

818 if anchors_ok[ianch][i]] 

819 anchor_choices.append(choices) 

820 if choices: 

821 anchor_take.append(choices[0]) 

822 else: 

823 anchor_take.append(None) 

824 

825 def cost(anchor_take): 

826 noverlaps = 0 

827 for i in range(n): 

828 for j in range(n): 

829 if i != j: 

830 i_take = anchor_take[i] 

831 j_take = anchor_take[j] 

832 if i_take is None or j_take is None: 

833 continue 

834 r_i = [xxx[i] for xxx in arects[i_take]] 

835 r_j = [xxx[j] for xxx in arects[j_take]] 

836 if roverlaps(r_i, r_j): 

837 noverlaps += 1 

838 

839 return noverlaps 

840 

841 cur_cost = cost(anchor_take) 

842 imax = 30 

843 while cur_cost != 0 and imax > 0: 

844 for i in range(n): 

845 for t in anchor_choices[i]: 

846 anchor_take_new = list(anchor_take) 

847 anchor_take_new[i] = t 

848 new_cost = cost(anchor_take_new) 

849 if new_cost < cur_cost: 

850 anchor_take = anchor_take_new 

851 cur_cost = new_cost 

852 

853 imax -= 1 

854 

855 while cur_cost != 0: 

856 for i in range(n): 

857 anchor_take_new = list(anchor_take) 

858 anchor_take_new[i] = None 

859 new_cost = cost(anchor_take_new) 

860 if new_cost < cur_cost: 

861 anchor_take = anchor_take_new 

862 cur_cost = new_cost 

863 break 

864 

865 anchor_strs = ['BL', 'TR', 'TL', 'BR'] 

866 

867 for i in range(n): 

868 ianchor = anchor_take[i] 

869 color = colors[i] 

870 if color is None: 

871 color = 'black' 

872 

873 if ianchor is not None: 

874 regions_taken.append([xxx[i] for xxx in arects[ianchor]]) 

875 

876 anchor = anchor_strs[ianchor] 

877 

878 yoff = [-sy[i], sy[i]][anchor[0] == 'B'] 

879 xoff = [-sx[i], sx[i]][anchor[1] == 'L'] 

880 if self.gmt.is_gmt5(): 

881 row = ( 

882 lons[i], lats[i], 

883 '%i,%s,%s' % (font_sizes[i], fonts[i], color), 

884 anchor, 

885 texts[i]) 

886 

887 farg = ['-F+f+j+a%g' % angles[i]] 

888 else: 

889 row = ( 

890 lons[i], lats[i], 

891 font_sizes[i], angles[i], fonts[i], anchor, 

892 texts[i]) 

893 farg = ['-G%s' % color] 

894 

895 self.gmt.pstext( 

896 in_rows=[row], 

897 D='%gp/%gp' % (xoff, yoff), 

898 *(self.jxyr + farg), 

899 **styles[i]) 

900 

901 if self._area_labels: 

902 

903 for lons, lats, text, color, font, font_size, style in \ 

904 self._area_labels: 

905 

906 if font_size is None: 

907 font_size = label_font_size 

908 

909 if color is None: 

910 color = 'black' 

911 

912 if self.gmt.is_gmt5(): 

913 farg = ['-F+f+j'] 

914 else: 

915 farg = ['-G%s' % color] 

916 

917 xs, ys = self.project(lats, lons) 

918 dx, dy = gmtpy.text_box( 

919 text, font=font, font_size=font_size, **style) 

920 

921 rects = [xs-0.5*dx, ys-0.5*dy, xs+0.5*dx, ys+0.5*dy] 

922 

923 locs_ok = num.ones(xs.size, dtype=num.bool) 

924 

925 for iloc in range(xs.size): 

926 rcandi = [xxx[iloc] for xxx in rects] 

927 

928 locs_ok[iloc] = True 

929 locs_ok[iloc] &= ( 

930 0 < rcandi[0] and rcandi[2] < w 

931 and 0 < rcandi[1] and rcandi[3] < h) 

932 

933 overlap = False 

934 for r in regions_taken: 

935 if roverlaps(r, rcandi): 

936 overlap = True 

937 break 

938 

939 locs_ok[iloc] &= not overlap 

940 

941 for xs_taken, ys_taken in points_taken: 

942 locs_ok[iloc] &= no_points_in_rect( 

943 xs_taken, ys_taken, *rcandi) 

944 

945 if not locs_ok[iloc]: 

946 break 

947 

948 rows = [] 

949 for iloc, (lon, lat) in enumerate(zip(lons, lats)): 

950 if not locs_ok[iloc]: 

951 continue 

952 

953 if self.gmt.is_gmt5(): 

954 row = ( 

955 lon, lat, 

956 '%i,%s,%s' % (font_size, font, color), 

957 'MC', 

958 text) 

959 

960 else: 

961 row = ( 

962 lon, lat, 

963 font_size, 0, font, 'MC', 

964 text) 

965 

966 rows.append(row) 

967 

968 regions_taken.append([xxx[iloc] for xxx in rects]) 

969 break 

970 

971 self.gmt.pstext( 

972 in_rows=rows, 

973 *(self.jxyr + farg), 

974 **style) 

975 

976 def draw_labels(self): 

977 self.gmt 

978 if not self._have_drawn_labels: 

979 self._draw_labels() 

980 self._have_drawn_labels = True 

981 

982 def add_label( 

983 self, lat, lon, text, 

984 offset_x=5., offset_y=5., 

985 color=None, 

986 font='1', 

987 font_size=None, 

988 angle=0, 

989 style={}): 

990 

991 if 'G' in style: 

992 style = style.copy() 

993 color = style.pop('G') 

994 

995 self._labels.append( 

996 (lon, lat, text, offset_x, offset_y, color, font, font_size, 

997 angle, style)) 

998 

999 def add_area_label( 

1000 self, lat, lon, text, 

1001 color=None, 

1002 font='3', 

1003 font_size=None, 

1004 style={}): 

1005 

1006 self._area_labels.append( 

1007 (lon, lat, text, color, font, font_size, style)) 

1008 

1009 def cities_in_region(self): 

1010 from pyrocko.dataset import geonames 

1011 cities = geonames.get_cities_region(region=self.wesn, minpop=0) 

1012 cities.extend(self.custom_cities) 

1013 cities.sort(key=lambda x: x.population) 

1014 return cities 

1015 

1016 def draw_cities(self, 

1017 exact=None, 

1018 include=[], 

1019 exclude=[], 

1020 nmax_soft=10, 

1021 psxy_style=dict(S='s5p', G='black')): 

1022 

1023 cities = self.cities_in_region() 

1024 

1025 if exact is not None: 

1026 cities = [c for c in cities if c.name in exact] 

1027 minpop = None 

1028 else: 

1029 cities = [c for c in cities if c.name not in exclude] 

1030 minpop = 10**3 

1031 for minpop_new in [1e3, 3e3, 1e4, 3e4, 1e5, 3e5, 1e6, 3e6, 1e7]: 

1032 cities_new = [ 

1033 c for c in cities 

1034 if c.population > minpop_new or c.name in include] 

1035 

1036 if len(cities_new) == 0 or ( 

1037 len(cities_new) < 3 and len(cities) < nmax_soft*2): 

1038 break 

1039 

1040 cities = cities_new 

1041 minpop = minpop_new 

1042 if len(cities) <= nmax_soft: 

1043 break 

1044 

1045 if cities: 

1046 lats = [c.lat for c in cities] 

1047 lons = [c.lon for c in cities] 

1048 

1049 self.gmt.psxy( 

1050 in_columns=(lons, lats), 

1051 *self.jxyr, **psxy_style) 

1052 

1053 for c in cities: 

1054 try: 

1055 text = c.name.encode('iso-8859-1').decode('iso-8859-1') 

1056 except UnicodeEncodeError: 

1057 text = c.asciiname 

1058 

1059 self.add_label(c.lat, c.lon, text) 

1060 

1061 self._cities_minpop = minpop 

1062 

1063 def add_stations(self, stations, psxy_style=dict()): 

1064 

1065 default_psxy_style = { 

1066 'S': 't8p', 

1067 'G': 'black' 

1068 } 

1069 default_psxy_style.update(psxy_style) 

1070 

1071 lats, lons = zip(*[s.effective_latlon for s in stations]) 

1072 

1073 self.gmt.psxy( 

1074 in_columns=(lons, lats), 

1075 *self.jxyr, **default_psxy_style) 

1076 

1077 for station in stations: 

1078 self.add_label( 

1079 station.effective_lat, 

1080 station.effective_lon, 

1081 '.'.join(x for x in (station.network, station.station) if x)) 

1082 

1083 def add_kite_scene(self, scene): 

1084 tile = FloatTile( 

1085 scene.frame.llLon, 

1086 scene.frame.llLat, 

1087 scene.frame.dLon, 

1088 scene.frame.dLat, 

1089 scene.displacement) 

1090 

1091 return tile 

1092 

1093 def add_gnss_campaign(self, campaign, psxy_style=None, offset_scale=None, 

1094 labels=True, vertical=False, fontsize=10): 

1095 

1096 stations = campaign.stations 

1097 

1098 if offset_scale is None: 

1099 offset_scale = num.zeros(campaign.nstations) 

1100 for ista, sta in enumerate(stations): 

1101 for comp in sta.components.values(): 

1102 offset_scale[ista] += comp.shift 

1103 offset_scale = num.sqrt(offset_scale**2).max() 

1104 

1105 size = math.sqrt(self.height**2 + self.width**2) 

1106 scale = (size/10.) / offset_scale 

1107 logger.debug('GNSS: Using offset scale %f, map scale %f', 

1108 offset_scale, scale) 

1109 

1110 lats, lons = zip(*[s.effective_latlon for s in stations]) 

1111 

1112 if vertical: 

1113 rows = [[lons[ista], lats[ista], 

1114 0., -s.up.shift, 

1115 (s.east.sigma + s.north.sigma) if s.east.sigma else 0., 

1116 s.up.sigma, 0., 

1117 s.code if labels else None] 

1118 for ista, s in enumerate(stations) 

1119 if s.up is not None] 

1120 

1121 else: 

1122 rows = [[lons[ista], lats[ista], 

1123 -s.east.shift, -s.north.shift, 

1124 s.east.sigma, s.north.sigma, s.correlation_ne, 

1125 s.code if labels else None] 

1126 for ista, s in enumerate(stations) 

1127 if s.east is not None or s.north is not None] 

1128 

1129 default_psxy_style = { 

1130 'h': 0, 

1131 'W': '2p,black', 

1132 'A': '+p2p,black+b+a40', 

1133 'G': 'black', 

1134 'L': True, 

1135 'S': 'e%dc/0.95/%d' % (scale, fontsize), 

1136 } 

1137 

1138 if not labels: 

1139 for row in rows: 

1140 row.pop(-1) 

1141 

1142 if psxy_style is not None: 

1143 default_psxy_style.update(psxy_style) 

1144 

1145 self.gmt.psvelo( 

1146 in_rows=rows, 

1147 *self.jxyr, 

1148 **default_psxy_style) 

1149 

1150 def draw_plates(self): 

1151 from pyrocko.dataset import tectonics 

1152 

1153 neast = 20 

1154 nnorth = max(1, int(round(num.round(self._hreg/self._wreg * neast)))) 

1155 norths = num.linspace(-self._hreg*0.5, self._hreg*0.5, nnorth) 

1156 easts = num.linspace(-self._wreg*0.5, self._wreg*0.5, neast) 

1157 norths2 = num.repeat(norths, neast) 

1158 easts2 = num.tile(easts, nnorth) 

1159 lats, lons = od.ne_to_latlon( 

1160 self.lat, self.lon, norths2, easts2) 

1161 

1162 bird = tectonics.PeterBird2003() 

1163 plates = bird.get_plates() 

1164 

1165 color_plates = gmtpy.color('aluminium5') 

1166 color_velocities = gmtpy.color('skyblue1') 

1167 color_velocities_lab = gmtpy.color(darken(gmtpy.color_tup('skyblue1'))) 

1168 

1169 points = num.vstack((lats, lons)).T 

1170 used = [] 

1171 for plate in plates: 

1172 mask = plate.contains_points(points) 

1173 if num.any(mask): 

1174 used.append((plate, mask)) 

1175 

1176 if len(used) > 1: 

1177 

1178 candi_fixed = {} 

1179 

1180 label_data = [] 

1181 for plate, mask in used: 

1182 

1183 mean_north = num.mean(norths2[mask]) 

1184 mean_east = num.mean(easts2[mask]) 

1185 iorder = num.argsort(num.sqrt( 

1186 (norths2[mask] - mean_north)**2 + 

1187 (easts2[mask] - mean_east)**2)) 

1188 

1189 lat_candis = lats[mask][iorder] 

1190 lon_candis = lons[mask][iorder] 

1191 

1192 candi_fixed[plate.name] = lat_candis.size 

1193 

1194 label_data.append(( 

1195 lat_candis, lon_candis, plate, color_plates)) 

1196 

1197 boundaries = bird.get_boundaries() 

1198 

1199 size = 2 

1200 

1201 psxy_kwargs = [] 

1202 

1203 for boundary in boundaries: 

1204 if num.any(points_in_region(boundary.points, self._wesn)): 

1205 for typ, part in boundary.split_types( 

1206 [['SUB'], 

1207 ['OSR', 'OTF', 'OCB', 'CTF', 'CCB', 'CRB']]): 

1208 

1209 lats, lons = part.T 

1210 

1211 kwargs = {} 

1212 if typ[0] == 'SUB': 

1213 if boundary.kind == '\\': 

1214 kwargs['S'] = 'f%g/%gp+t+r' % ( 

1215 0.45*size, 3.*size) 

1216 elif boundary.kind == '/': 

1217 kwargs['S'] = 'f%g/%gp+t+l' % ( 

1218 0.45*size, 3.*size) 

1219 

1220 kwargs['G'] = color_plates 

1221 

1222 kwargs['in_columns'] = (lons, lats) 

1223 kwargs['W'] = '%gp,%s' % (size, color_plates), 

1224 

1225 psxy_kwargs.append(kwargs) 

1226 

1227 if boundary.kind == '\\': 

1228 if boundary.plate_name2 in candi_fixed: 

1229 candi_fixed[boundary.plate_name2] += \ 

1230 neast*nnorth 

1231 

1232 elif boundary.kind == '/': 

1233 if boundary.plate_name1 in candi_fixed: 

1234 candi_fixed[boundary.plate_name1] += \ 

1235 neast*nnorth 

1236 

1237 candi_fixed = [name for name in sorted( 

1238 list(candi_fixed.keys()), key=lambda name: -candi_fixed[name])] 

1239 

1240 candi_fixed.append(None) 

1241 

1242 gsrm = tectonics.GSRM1() 

1243 

1244 for name in candi_fixed: 

1245 if name not in gsrm.plate_names() \ 

1246 and name not in gsrm.plate_alt_names(): 

1247 

1248 continue 

1249 

1250 lats, lons, vnorth, veast, vnorth_err, veast_err, corr = \ 

1251 gsrm.get_velocities(name, region=self._wesn) 

1252 

1253 fixed_plate_name = name 

1254 

1255 if self.show_plate_velocities: 

1256 self.gmt.psvelo( 

1257 in_columns=( 

1258 lons, lats, veast, vnorth, veast_err, vnorth_err, 

1259 corr), 

1260 W='0.25p,%s' % color_velocities, 

1261 A='9p+e+g%s' % color_velocities, 

1262 S='e0.2p/0.95/10', 

1263 *self.jxyr) 

1264 

1265 for _ in range(len(lons) // 50 + 1): 

1266 ii = random.randint(0, len(lons)-1) 

1267 v = math.sqrt(vnorth[ii]**2 + veast[ii]**2) 

1268 self.add_label( 

1269 lats[ii], lons[ii], '%.0f' % v, 

1270 font_size=0.7*self.gmt.label_font_size(), 

1271 style=dict( 

1272 G=color_velocities_lab)) 

1273 

1274 break 

1275 

1276 if self.show_plate_names: 

1277 for (lat_candis, lon_candis, plate, color) in label_data: 

1278 full_name = bird.full_name(plate.name) 

1279 if plate.name == fixed_plate_name: 

1280 full_name = '@_' + full_name + '@_' 

1281 

1282 self.add_area_label( 

1283 lat_candis, lon_candis, 

1284 full_name, 

1285 color=color, 

1286 font='3') 

1287 

1288 for kwargs in psxy_kwargs: 

1289 self.gmt.psxy(*self.jxyr, **kwargs) 

1290 

1291 

1292def rand(mi, ma): 

1293 mi = float(mi) 

1294 ma = float(ma) 

1295 return random.random() * (ma-mi) + mi 

1296 

1297 

1298def split_region(region): 

1299 west, east, south, north = topo.positive_region(region) 

1300 if east > 180: 

1301 return [(west, 180., south, north), 

1302 (-180., east-360., south, north)] 

1303 else: 

1304 return [region] 

1305 

1306 

1307class CPTLevel(Object): 

1308 vmin = Float.T() 

1309 vmax = Float.T() 

1310 color_min = Tuple.T(3, Float.T()) 

1311 color_max = Tuple.T(3, Float.T()) 

1312 

1313 

1314class CPT(Object): 

1315 color_below = Tuple.T(3, Float.T(), optional=True) 

1316 color_above = Tuple.T(3, Float.T(), optional=True) 

1317 color_nan = Tuple.T(3, Float.T(), optional=True) 

1318 levels = List.T(CPTLevel.T()) 

1319 

1320 def scale(self, vmin, vmax): 

1321 vmin_old, vmax_old = self.levels[0].vmin, self.levels[-1].vmax 

1322 for level in self.levels: 

1323 level.vmin = (level.vmin - vmin_old) / (vmax_old - vmin_old) * \ 

1324 (vmax - vmin) + vmin 

1325 level.vmax = (level.vmax - vmin_old) / (vmax_old - vmin_old) * \ 

1326 (vmax - vmin) + vmin 

1327 

1328 def discretize(self, nlevels): 

1329 colors = [] 

1330 vals = [] 

1331 for level in self.levels: 

1332 vals.append(level.vmin) 

1333 vals.append(level.vmax) 

1334 colors.append(level.color_min) 

1335 colors.append(level.color_max) 

1336 

1337 r, g, b = num.array(colors, dtype=float).T 

1338 vals = num.array(vals, dtype=float) 

1339 

1340 vmin, vmax = self.levels[0].vmin, self.levels[-1].vmax 

1341 x = num.linspace(vmin, vmax, nlevels+1) 

1342 rd = num.interp(x, vals, r) 

1343 gd = num.interp(x, vals, g) 

1344 bd = num.interp(x, vals, b) 

1345 

1346 levels = [] 

1347 for ilevel in range(nlevels): 

1348 color = ( 

1349 float(0.5*(rd[ilevel]+rd[ilevel+1])), 

1350 float(0.5*(gd[ilevel]+gd[ilevel+1])), 

1351 float(0.5*(bd[ilevel]+bd[ilevel+1]))) 

1352 

1353 levels.append(CPTLevel( 

1354 vmin=x[ilevel], 

1355 vmax=x[ilevel+1], 

1356 color_min=color, 

1357 color_max=color)) 

1358 

1359 cpt = CPT( 

1360 color_below=self.color_below, 

1361 color_above=self.color_above, 

1362 color_nan=self.color_nan, 

1363 levels=levels) 

1364 

1365 return cpt 

1366 

1367 

1368class CPTParseError(Exception): 

1369 pass 

1370 

1371 

1372def read_cpt(filename): 

1373 with open(filename) as f: 

1374 color_below = None 

1375 color_above = None 

1376 color_nan = None 

1377 levels = [] 

1378 try: 

1379 for line in f: 

1380 line = line.strip() 

1381 toks = line.split() 

1382 

1383 if line.startswith('#'): 

1384 continue 

1385 

1386 elif line.startswith('B'): 

1387 color_below = tuple(map(float, toks[1:4])) 

1388 

1389 elif line.startswith('F'): 

1390 color_above = tuple(map(float, toks[1:4])) 

1391 

1392 elif line.startswith('N'): 

1393 color_nan = tuple(map(float, toks[1:4])) 

1394 

1395 else: 

1396 values = list(map(float, line.split())) 

1397 vmin = values[0] 

1398 color_min = tuple(values[1:4]) 

1399 vmax = values[4] 

1400 color_max = tuple(values[5:8]) 

1401 levels.append(CPTLevel( 

1402 vmin=vmin, 

1403 vmax=vmax, 

1404 color_min=color_min, 

1405 color_max=color_max)) 

1406 

1407 except Exception: 

1408 raise CPTParseError() 

1409 

1410 return CPT( 

1411 color_below=color_below, 

1412 color_above=color_above, 

1413 color_nan=color_nan, 

1414 levels=levels) 

1415 

1416 

1417def color_to_int(color): 

1418 return tuple(max(0, min(255, int(round(x)))) for x in color) 

1419 

1420 

1421def write_cpt(cpt, filename): 

1422 with open(filename, 'w') as f: 

1423 for level in cpt.levels: 

1424 f.write( 

1425 '%e %i %i %i %e %i %i %i\n' % 

1426 ((level.vmin, ) + color_to_int(level.color_min) + 

1427 (level.vmax, ) + color_to_int(level.color_max))) 

1428 

1429 if cpt.color_below: 

1430 f.write('B %i %i %i\n' % color_to_int(cpt.color_below)) 

1431 

1432 if cpt.color_above: 

1433 f.write('F %i %i %i\n' % color_to_int(cpt.color_above)) 

1434 

1435 if cpt.color_nan: 

1436 f.write('N %i %i %i\n' % color_to_int(cpt.color_nan)) 

1437 

1438 

1439def cpt_merge_wet_dry(wet, dry): 

1440 levels = [] 

1441 for level in wet.levels: 

1442 if level.vmin < 0.: 

1443 if level.vmax > 0.: 

1444 level.vmax = 0. 

1445 

1446 levels.append(level) 

1447 

1448 for level in dry.levels: 

1449 if level.vmax > 0.: 

1450 if level.vmin < 0.: 

1451 level.vmin = 0. 

1452 

1453 levels.append(level) 

1454 

1455 combi = CPT( 

1456 color_below=wet.color_below, 

1457 color_above=dry.color_above, 

1458 color_nan=dry.color_nan, 

1459 levels=levels) 

1460 

1461 return combi 

1462 

1463 

1464if __name__ == '__main__': 

1465 from pyrocko import util 

1466 util.setup_logging('pyrocko.automap', 'info') 

1467 

1468 import sys 

1469 if len(sys.argv) == 2: 

1470 

1471 n = int(sys.argv[1]) 

1472 

1473 for i in range(n): 

1474 m = Map( 

1475 lat=rand(-60., 60.), 

1476 lon=rand(-180., 180.), 

1477 radius=math.exp(rand(math.log(500*km), math.log(3000*km))), 

1478 width=30., height=30., 

1479 show_grid=True, 

1480 show_topo=True, 

1481 color_dry=(238, 236, 230), 

1482 topo_cpt_wet='light_sea_uniform', 

1483 topo_cpt_dry='light_land_uniform', 

1484 illuminate=True, 

1485 illuminate_factor_ocean=0.15, 

1486 show_rivers=False, 

1487 show_plates=True) 

1488 

1489 m.draw_cities() 

1490 print(m) 

1491 m.save('map_%02i.pdf' % i)