Coverage for /usr/local/lib/python3.11/dist-packages/grond/targets/gnss_campaign/target.py: 40%

153 statements  

« prev     ^ index     » next       coverage.py v6.5.0, created at 2024-06-12 11:12 +0000

1import logging 

2import numpy as num 

3from scipy import linalg as splinalg 

4 

5from pyrocko import gf 

6from pyrocko.guts import String, Dict, List, Int 

7 

8from ..base import MisfitConfig, MisfitTarget, MisfitResult, TargetGroup 

9from grond.meta import has_get_plot_classes 

10 

11guts_prefix = 'grond' 

12logger = logging.getLogger('grond.target').getChild('gnss_campaign') 

13 

14 

15class GNSSCampaignMisfitResult(MisfitResult): 

16 """Carries the observations for a target and corresponding synthetics. """ 

17 statics_syn = Dict.T(optional=True, 

18 help='Synthetic gnss surface displacements') 

19 statics_obs = Dict.T(optional=True, 

20 help='Observed gnss surface displacements') 

21 

22 

23class GNSSCampaignMisfitConfig(MisfitConfig): 

24 pass 

25 

26 

27class GNSSCampaignTargetGroup(TargetGroup): 

28 """Handles static displacements from campaign GNSS observations, e.g GPS. 

29 

30 Station information, displacements and measurement errors are provided in 

31 a `yaml`-file (please find an example in the documentation). The 

32 measurement errors may consider correlations between components of a 

33 station, but correlations between single stations is not considered. 

34 """ 

35 gnss_campaigns = List.T( 

36 optional=True, 

37 help='List of individual campaign names' 

38 ' (`name` in `gnss.yaml` files).') 

39 misfit_config = GNSSCampaignMisfitConfig.T() 

40 

41 def get_targets(self, ds, event, default_path='none'): 

42 logger.debug('Selecting GNSS targets...') 

43 targets = [] 

44 

45 for camp in ds.get_gnss_campaigns(): 

46 if camp.name not in self.gnss_campaigns and\ 

47 '*all' not in self.gnss_campaigns: 

48 continue 

49 

50 if not isinstance(self.misfit_config, 

51 GNSSCampaignMisfitConfig): 

52 raise AttributeError('misfit_config must be of type' 

53 ' GNSSCampaignMisfitConfig.') 

54 

55 lats = num.array([s.lat for s in camp.stations]) 

56 lons = num.array([s.lon for s in camp.stations]) 

57 

58 north_shifts = num.array([s.north_shift for s in camp.stations]) 

59 east_shifts = num.array([s.east_shift for s in camp.stations]) 

60 

61 gnss_target = GNSSCampaignMisfitTarget( 

62 quantity='displacement', 

63 campaign_name=camp.name, 

64 lats=lats, 

65 lons=lons, 

66 east_shifts=east_shifts, 

67 north_shifts=north_shifts, 

68 ncomponents=camp.ncomponents, 

69 tsnapshot=None, 

70 interpolation=self.interpolation, 

71 store_id=self.store_id, 

72 normalisation_family=self.normalisation_family, 

73 path=self.path or default_path, 

74 misfit_config=self.misfit_config) 

75 

76 gnss_target.set_dataset(ds) 

77 targets.append(gnss_target) 

78 

79 return targets 

80 

81 

82@has_get_plot_classes 

83class GNSSCampaignMisfitTarget(gf.GNSSCampaignTarget, MisfitTarget): 

84 """Handles and carries out operations related to the objective functions. 

85 

86 The objective function is here the weighted misfit between observed 

87 and predicted surface displacements. 

88 """ 

89 campaign_name = String.T() 

90 ncomponents = Int.T(optional=True) 

91 misfit_config = GNSSCampaignMisfitConfig.T() 

92 

93 can_bootstrap_weights = True 

94 can_bootstrap_residuals = True 

95 

96 plot_misfits_cumulative = False 

97 

98 def __init__(self, **kwargs): 

99 gf.GNSSCampaignTarget.__init__(self, **kwargs) 

100 MisfitTarget.__init__(self, **kwargs) 

101 self._obs_data = None 

102 self._sigma = None 

103 self._weights = None 

104 self._correlated_weights = None 

105 self._station_component_mask = None 

106 

107 @property 

108 def id(self): 

109 return self.campaign_name 

110 

111 def string_id(self): 

112 return self.campaign_name 

113 

114 def misfits_string_ids(self): 

115 id_list = [] 

116 for station in self.campaign.stations: 

117 for name in ('north', 'east', 'up'): 

118 component = station.__getattribute__(name) 

119 if not component: 

120 continue 

121 id_list.append('%s.%s.%s' % 

122 (self.path, station.code, name[0].upper())) 

123 return id_list 

124 

125 @property 

126 def station_names(self): 

127 return ['%s' % (station.code) 

128 for station in self.campaign.stations] 

129 

130 @property 

131 def nmisfits(self): 

132 if self.ncomponents is None: 

133 try: 

134 self.campaign.ncomponents 

135 except ValueError: 

136 raise ValueError('Set the dataset!') 

137 return self.ncomponents 

138 

139 @property 

140 def nstations(self): 

141 return self.lats.size 

142 

143 def set_dataset(self, ds): 

144 MisfitTarget.set_dataset(self, ds) 

145 

146 def get_correlated_weights(self): 

147 if self._correlated_weights is None: 

148 self._correlated_weights = splinalg.sqrtm(self.weights) 

149 return self._correlated_weights 

150 

151 @property 

152 def campaign(self): 

153 return self._ds.get_gnss_campaign(self.campaign_name) 

154 

155 @property 

156 def obs_data(self): 

157 if self._obs_data is None: 

158 self._obs_data = num.concatenate( 

159 [s.get_displacement_data() for s in self.campaign.stations]) 

160 return self._obs_data 

161 

162 @property 

163 def obs_sigma(self): 

164 if self._sigma is None: 

165 self._sigma = num.array([ 

166 [s.north.sigma for s in self.campaign.stations], 

167 [s.east.sigma for s in self.campaign.stations], 

168 [s.up.sigma for s in self.campaign.stations]])\ 

169 .ravel(order='F') 

170 return self._sigma 

171 

172 @property 

173 def weights(self): 

174 """ 

175 Weights are the square-rooted, inverted data error variance-covariance. 

176 

177 The single component variances, and if provided the component 

178 covariances, are used to build a data variance matrix or 

179 variance-covariance matrix. 

180 

181 This matrix has the size for all possible NEU components, 

182 but throws zeros for not given components, also recorded in 

183 the _station_component_mask. 

184 """ 

185 if self._weights is None: 

186 covar = self.campaign.get_covariance_matrix() 

187 

188 if not num.any(covar.diagonal()): 

189 logger.warning('GNSS Stations have an empty covariance matrix.' 

190 ' Weights will be all equal.') 

191 num.fill_diagonal(covar, 1.) 

192 

193 self._weights = num.asmatrix(covar).I 

194 

195 return self._weights 

196 

197 @property 

198 def station_component_mask(self): 

199 if self._station_component_mask is None: 

200 self._station_component_mask = self.campaign.get_component_mask() 

201 return self._station_component_mask 

202 

203 @property 

204 def station_weights(self): 

205 weights = num.diag(self.weights) 

206 return num.mean([weights[0::3], weights[1::3], weights[2::3]], axis=0) 

207 

208 def component_weights(self): 

209 ws = num.sum(self.weights, axis=0) 

210 return ws 

211 

212 def post_process(self, engine, source, statics): 

213 """Applies the objective function. 

214 

215 As a result the weighted misfits are given and the observed and 

216 synthetic data. 

217 """ 

218 obs = self.obs_data 

219 

220 # All data is ordered in vectors as 

221 # S1_n, S1_e, S1_u, ..., Sn_n, Sn_e, Sn_u. Hence (.ravel(order='F')) 

222 syn = num.array([ 

223 statics['displacement.n'], 

224 statics['displacement.e'], 

225 -statics['displacement.d']])\ 

226 .ravel(order='F') 

227 

228 syn = syn[self.station_component_mask] 

229 res = obs - syn 

230 

231 misfit_value = res 

232 misfit_norm = obs 

233 

234 mf = num.vstack((misfit_value, misfit_norm)).T 

235 

236 result = GNSSCampaignMisfitResult( 

237 misfits=mf) 

238 if self._result_mode == 'full': 

239 result.statics_syn = statics 

240 result.statics_obs = obs 

241 

242 return result 

243 

244 def get_combined_weight(self): 

245 """A given manual weight in the configuration is applied.""" 

246 if self._combined_weight is None: 

247 self._combined_weight = num.full(self.nmisfits, self.manual_weight) 

248 

249 return self._combined_weight 

250 

251 def init_bootstrap_residuals(self, nbootstraps, rstate=None): 

252 logger.info('GNSS campaign %s, bootstrapping residuals' 

253 ' from measurement uncertainties ...' 

254 % self.campaign.name) 

255 if rstate is None: 

256 rstate = num.random.RandomState() 

257 

258 campaign = self.campaign 

259 bootstraps = num.empty((nbootstraps, self.ncomponents)) 

260 

261 sigmas = num.diag(num.sqrt(campaign.get_covariance_matrix())) 

262 if not num.all(sigmas): 

263 logger.warning('Bootstrapping GNSS stations is meaningless,' 

264 ' all station\'s sigma are 0.0!') 

265 

266 for ibs in range(nbootstraps): 

267 syn_noise = rstate.normal(scale=sigmas.ravel()) 

268 bootstraps[ibs, :] = syn_noise 

269 

270 self.set_bootstrap_residuals(bootstraps) 

271 

272 @classmethod 

273 def get_plot_classes(cls): 

274 from . import plot 

275 plots = super(GNSSCampaignMisfitTarget, cls).get_plot_classes() 

276 plots.extend(plot.get_plot_classes()) 

277 return plots