# http://pyrocko.org - GPLv3
#
# The Pyrocko Developers, 21st Century
# ---|P------/S----------~Lg----------
'''
Utility functions and defintions for a common plot style throughout Pyrocko.
Functions with name prefix ``mpl_`` are Matplotlib specific. All others should
be toolkit-agnostic.
The following skeleton can be used to produce nice PDF figures, with absolute
sizes derived from paper and font sizes
(file :file:`/../../examples/plot_skeleton.py`
in the Pyrocko source directory)::
from matplotlib import pyplot as plt
from pyrocko.plot import mpl_init, mpl_margins, mpl_papersize
# from pyrocko.plot import mpl_labelspace
fontsize = 9. # in points
# set some Pyrocko style defaults
mpl_init(fontsize=fontsize)
fig = plt.figure(figsize=mpl_papersize('a4', 'landscape'))
# let margins be proportional to selected font size, e.g. top and bottom
# margin are set to be 5*fontsize = 45 [points]
labelpos = mpl_margins(fig, w=7., h=5., units=fontsize)
axes = fig.add_subplot(1, 1, 1)
# positioning of axis labels
# mpl_labelspace(axes) # either: relative to axis tick labels
labelpos(axes, 2., 1.5) # or: relative to left/bottom paper edge
axes.plot([0, 1], [0, 9])
axes.set_xlabel('Time [s]')
axes.set_ylabel('Amplitude [m]')
fig.savefig('plot_skeleton.pdf')
plt.show()
'''
import math
import random
import time
import calendar
import numpy as num
from pyrocko.util import parse_md, time_to_str, arange2, to_time_float
from pyrocko.guts import StringChoice, Float, Int, Bool, Tuple, Object
__doc__ += parse_md(__file__)
guts_prefix = 'pf'
point = 1.
inch = 72.
cm = 28.3465
units_dict = {
'point': point,
'inch': inch,
'cm': cm,
}
_doc_units = "``'point'``, ``'inch'``, or ``'cm'``"
def apply_units(x, units):
if isinstance(units, str):
units = units_dict[units]
if isinstance(x, (int, float)):
return x / units
else:
if isinstance(x, tuple):
return tuple(v / units for v in x)
else:
return list(v / units for v in x)
tango_colors = {
'butter1': (252, 233, 79),
'butter2': (237, 212, 0),
'butter3': (196, 160, 0),
'chameleon1': (138, 226, 52),
'chameleon2': (115, 210, 22),
'chameleon3': (78, 154, 6),
'orange1': (252, 175, 62),
'orange2': (245, 121, 0),
'orange3': (206, 92, 0),
'skyblue1': (114, 159, 207),
'skyblue2': (52, 101, 164),
'skyblue3': (32, 74, 135),
'plum1': (173, 127, 168),
'plum2': (117, 80, 123),
'plum3': (92, 53, 102),
'chocolate1': (233, 185, 110),
'chocolate2': (193, 125, 17),
'chocolate3': (143, 89, 2),
'scarletred1': (239, 41, 41),
'scarletred2': (204, 0, 0),
'scarletred3': (164, 0, 0),
'aluminium1': (238, 238, 236),
'aluminium2': (211, 215, 207),
'aluminium3': (186, 189, 182),
'aluminium4': (136, 138, 133),
'aluminium5': (85, 87, 83),
'aluminium6': (46, 52, 54)}
graph_colors = [
tango_colors[_x] for _x in (
'scarletred2',
'skyblue3',
'chameleon3',
'orange2',
'plum2',
'chocolate2',
'butter2')]
def color(x=None):
if x is None:
return tuple([random.randint(0, 255) for _x in 'rgb'])
if isinstance(x, int):
if 0 <= x < len(graph_colors):
return graph_colors[x]
else:
return (0, 0, 0)
elif isinstance(x, str):
if x in tango_colors:
return tango_colors[x]
elif isinstance(x, tuple):
return x
assert False, "Don't know what to do with this color definition: %s" % x
def to01(c):
return tuple(x/255. for x in c)
[docs]def nice_value(x):
'''
Round x to nice value.
'''
if x == 0.0:
return 0.0
exp = 1.0
sign = 1
if x < 0.0:
x = -x
sign = -1
while x >= 1.0:
x /= 10.0
exp *= 10.0
while x < 0.1:
x *= 10.0
exp /= 10.0
if x >= 0.75:
return sign * 1.0 * exp
if x >= 0.35:
return sign * 0.5 * exp
if x >= 0.15:
return sign * 0.2 * exp
return sign * 0.1 * exp
_papersizes_list = [
('a0', (2380., 3368.)),
('a1', (1684., 2380.)),
('a2', (1190., 1684.)),
('a3', (842., 1190.)),
('a4', (595., 842.)),
('a5', (421., 595.)),
('a6', (297., 421.)),
('a7', (210., 297.)),
('a8', (148., 210.)),
('a9', (105., 148.)),
('a10', (74., 105.)),
('b0', (2836., 4008.)),
('b1', (2004., 2836.)),
('b2', (1418., 2004.)),
('b3', (1002., 1418.)),
('b4', (709., 1002.)),
('b5', (501., 709.)),
('archa', (648., 864.)),
('archb', (864., 1296.)),
('archc', (1296., 1728.)),
('archd', (1728., 2592.)),
('arche', (2592., 3456.)),
('flsa', (612., 936.)),
('halfletter', (396., 612.)),
('note', (540., 720.)),
('letter', (612., 792.)),
('legal', (612., 1008.)),
('11x17', (792., 1224.)),
('ledger', (1224., 792.))]
papersizes = dict(_papersizes_list)
_doc_papersizes = ', '.join("``'%s'``" % k for (k, _) in _papersizes_list)
[docs]def papersize(paper, orientation='landscape', units='point'):
'''
Get paper size from string.
:param paper: string selecting paper size. Choices: %s
:param orientation: ``'landscape'``, or ``'portrait'``
:param units: Units to be returned. Choices: %s
:returns: ``(width, height)``
'''
assert orientation in ('landscape', 'portrait')
w, h = papersizes[paper.lower()]
if orientation == 'landscape':
w, h = h, w
return apply_units((w, h), units)
papersize.__doc__ %= (_doc_papersizes, _doc_units)
[docs]class AutoScaleMode(StringChoice):
'''
Mode of operation for auto-scaling.
================ ==================================================
mode description
================ ==================================================
``'auto'``: Look at data range and choose one of the choices
below.
``'min-max'``: Output range is selected to include data range.
``'0-max'``: Output range shall start at zero and end at data
max.
``'min-0'``: Output range shall start at data min and end at
zero.
``'symmetric'``: Output range shall by symmetric by zero.
``'off'``: Similar to ``'min-max'``, but snap and space are
disabled, such that the output range always
exactly matches the data range.
================ ==================================================
'''
choices = ['auto', 'min-max', '0-max', 'min-0', 'symmetric', 'off']
[docs]class AutoScaler(Object):
'''
Tunable 1D autoscaling based on data range.
Instances of this class may be used to determine nice minima, maxima and
increments for ax annotations, as well as suitable common exponents for
notation.
The autoscaling process is guided by the following public attributes:
'''
approx_ticks = Float.T(
default=7.0,
help='Approximate number of increment steps (tickmarks) to generate.')
mode = AutoScaleMode.T(
default='auto',
help='''Mode of operation for auto-scaling.''')
exp = Int.T(
optional=True,
help='If defined, override automatically determined exponent for '
'notation by the given value.')
snap = Bool.T(
default=False,
help='If set to True, snap output range to multiples of increment. '
"This parameter has no effect, if mode is set to ``'off'``.")
inc = Float.T(
optional=True,
help='If defined, override automatically determined tick increment by '
'the given value.')
space = Float.T(
default=0.0,
help='Add some padding to the range. The value given, is the fraction '
'by which the output range is increased on each side. If mode is '
"``'0-max'`` or ``'min-0'``, the end at zero is kept fixed "
'at zero. This parameter has no effect if mode is set to '
"``'off'``.")
exp_factor = Int.T(
default=3,
help='Exponent of notation is chosen to be a multiple of this value.')
no_exp_interval = Tuple.T(
2, Int.T(),
default=(-3, 5),
help='Range of exponent, for which no exponential notation is a'
'allowed.')
def __init__(
self,
approx_ticks=7.0,
mode='auto',
exp=None,
snap=False,
inc=None,
space=0.0,
exp_factor=3,
no_exp_interval=(-3, 5)):
'''
Create new AutoScaler instance.
The parameters are described in the AutoScaler documentation.
'''
Object.__init__(
self,
approx_ticks=approx_ticks,
mode=mode,
exp=exp,
snap=snap,
inc=inc,
space=space,
exp_factor=exp_factor,
no_exp_interval=no_exp_interval)
[docs] def make_scale(self, data_range, override_mode=None):
'''
Get nice minimum, maximum and increment for given data range.
Returns ``(minimum, maximum, increment)`` or ``(maximum, minimum,
-increment)``, depending on whether data_range is ``(data_min,
data_max)`` or ``(data_max, data_min)``. If ``override_mode`` is
defined, the mode attribute is temporarily overridden by the given
value.
'''
data_min = min(data_range)
data_max = max(data_range)
is_reverse = (data_range[0] > data_range[1])
a = self.mode
if self.mode == 'auto':
a = self.guess_autoscale_mode(data_min, data_max)
if override_mode is not None:
a = override_mode
mi, ma = 0, 0
if a == 'off':
mi, ma = data_min, data_max
elif a == '0-max':
mi = 0.0
if data_max > 0.0:
ma = data_max
else:
ma = 1.0
elif a == 'min-0':
ma = 0.0
if data_min < 0.0:
mi = data_min
else:
mi = -1.0
elif a == 'min-max':
mi, ma = data_min, data_max
elif a == 'symmetric':
m = max(abs(data_min), abs(data_max))
mi = -m
ma = m
nmi = mi
if (mi != 0. or a == 'min-max') and a != 'off':
nmi = mi - self.space*(ma-mi)
nma = ma
if (ma != 0. or a == 'min-max') and a != 'off':
nma = ma + self.space*(ma-mi)
mi, ma = nmi, nma
if mi == ma and a != 'off':
mi -= 1.0
ma += 1.0
# make nice tick increment
if self.inc is not None:
inc = self.inc
else:
if self.approx_ticks > 0.:
inc = nice_value((ma-mi) / self.approx_ticks)
else:
inc = nice_value((ma-mi)*10.)
if inc == 0.0:
inc = 1.0
# snap min and max to ticks if this is wanted
if self.snap and a != 'off':
ma = inc * math.ceil(ma/inc)
mi = inc * math.floor(mi/inc)
if is_reverse:
return ma, mi, -inc
else:
return mi, ma, inc
[docs] def make_exp(self, x):
'''
Get nice exponent for notation of ``x``.
For ax annotations, give tick increment as ``x``.
'''
if self.exp is not None:
return self.exp
x = abs(x)
if x == 0.0:
return 0
if 10**self.no_exp_interval[0] <= x <= 10**self.no_exp_interval[1]:
return 0
return math.floor(math.log10(x)/self.exp_factor)*self.exp_factor
[docs] def guess_autoscale_mode(self, data_min, data_max):
'''
Guess mode of operation, based on data range.
Used to map ``'auto'`` mode to ``'0-max'``, ``'min-0'``, ``'min-max'``
or ``'symmetric'``.
'''
a = 'min-max'
if data_min >= 0.0:
if data_min < data_max/2.:
a = '0-max'
else:
a = 'min-max'
if data_max <= 0.0:
if data_max > data_min/2.:
a = 'min-0'
else:
a = 'min-max'
if data_min < 0.0 and data_max > 0.0:
if abs((abs(data_max)-abs(data_min)) /
(abs(data_max)+abs(data_min))) < 0.5:
a = 'symmetric'
else:
a = 'min-max'
return a
# below, some convenience functions for matplotlib plotting
[docs]def mpl_init(fontsize=10):
'''
Initialize Matplotlib rc parameters Pyrocko style.
Returns the matplotlib.pyplot module for convenience.
'''
import matplotlib
matplotlib.rcdefaults()
matplotlib.rc('font', size=fontsize)
matplotlib.rc('axes', linewidth=1.5)
matplotlib.rc('xtick', direction='out')
matplotlib.rc('ytick', direction='out')
ts = fontsize * 0.7071
matplotlib.rc('xtick.major', size=ts, width=0.5, pad=ts)
matplotlib.rc('ytick.major', size=ts, width=0.5, pad=ts)
matplotlib.rc('figure', facecolor='white')
try:
from cycler import cycler
matplotlib.rc(
'axes', prop_cycle=cycler(
'color', [to01(x) for x in graph_colors]))
except (ImportError, KeyError):
try:
matplotlib.rc('axes', color_cycle=[to01(x) for x in graph_colors])
except KeyError:
pass
from matplotlib import pyplot as plt
return plt
[docs]def mpl_margins(
fig,
left=1.0, top=1.0, right=1.0, bottom=1.0,
wspace=None, hspace=None,
w=None, h=None,
nw=None, nh=None,
all=None,
units='inch'):
'''
Adjust Matplotlib subplot params with absolute values in user units.
Calls :py:meth:`matplotlib.figure.Figure.subplots_adjust` on ``fig`` with
absolute margin widths/heights rather than relative values. If ``wspace``
or ``hspace`` are given, the number of subplots must be given in ``nw``
and ``nh`` because ``subplots_adjust()`` treats the spacing parameters
relative to the subplot width and height.
:param units: Unit multiplier or unit as string: %s
:param left,right,top,bottom: margin space
:param w: set ``left`` and ``right`` at once
:param h: set ``top`` and ``bottom`` at once
:param all: set ``left``, ``top``, ``right``, and ``bottom`` at once
:param nw: number of subplots horizontally
:param nh: number of subplots vertically
:param wspace: horizontal spacing between subplots
:param hspace: vertical spacing between subplots
'''
left, top, right, bottom = map(
float, (left, top, right, bottom))
if w is not None:
left = right = float(w)
if h is not None:
top = bottom = float(h)
if all is not None:
left = right = top = bottom = float(all)
ufac = units_dict.get(units, units) / inch
left *= ufac
right *= ufac
top *= ufac
bottom *= ufac
width, height = fig.get_size_inches()
rel_wspace = None
rel_hspace = None
if wspace is not None:
wspace *= ufac
if nw is None:
raise ValueError('wspace must be given in combination with nw')
wsub = (width - left - right - (nw-1) * wspace) / nw
rel_wspace = wspace / wsub
else:
wsub = width - left - right
if hspace is not None:
hspace *= ufac
if nh is None:
raise ValueError('hspace must be given in combination with nh')
hsub = (height - top - bottom - (nh-1) * hspace) / nh
rel_hspace = hspace / hsub
else:
hsub = height - top - bottom
fig.subplots_adjust(
left=left/width,
right=1.0 - right/width,
bottom=bottom/height,
top=1.0 - top/height,
wspace=rel_wspace,
hspace=rel_hspace)
def labelpos(axes, xpos=0., ypos=0.):
xpos *= ufac
ypos *= ufac
axes.get_yaxis().set_label_coords(-((left-xpos) / wsub), 0.5)
axes.get_xaxis().set_label_coords(0.5, -((bottom-ypos) / hsub))
return labelpos
mpl_margins.__doc__ %= _doc_units
[docs]def mpl_labelspace(axes):
'''
Add some extra padding between label and ax annotations.
'''
xa = axes.get_xaxis()
ya = axes.get_yaxis()
for attr in ('labelpad', 'LABELPAD'):
if hasattr(xa, attr):
setattr(xa, attr, xa.get_label().get_fontsize())
setattr(ya, attr, ya.get_label().get_fontsize())
break
[docs]def mpl_papersize(paper, orientation='landscape'):
'''
Get paper size in inch from string.
Returns argument suitable to be passed to the ``figsize`` argument of
:py:func:`pyplot.figure`.
:param paper: string selecting paper size. Choices: %s
:param orientation: ``'landscape'``, or ``'portrait'``
:returns: ``(width, height)``
'''
return papersize(paper, orientation=orientation, units='inch')
mpl_papersize.__doc__ %= _doc_papersizes
[docs]class InvalidColorDef(ValueError):
pass
def mpl_graph_color(i):
return to01(graph_colors[i % len(graph_colors)])
[docs]def mpl_color(x):
'''
Convert string into color float tuple ranged 0-1 for use with Matplotlib.
Accepts tango color names, matplotlib color names, and slash-separated
strings. In the latter case, if values are larger than 1., the color
is interpreted as 0-255 ranged. Single-valued (grayscale), three-valued
(color) and four-valued (color with alpha) are accepted. An
:py:exc:`InvalidColorDef` exception is raised when the convertion fails.
'''
import matplotlib.colors
if x in tango_colors:
return to01(tango_colors[x])
s = x.split('/')
if len(s) in (1, 3, 4):
try:
vals = list(map(float, s))
if all(0. <= v <= 1. for v in vals):
return vals
elif all(0. <= v <= 255. for v in vals):
return to01(vals)
except ValueError:
try:
return matplotlib.colors.colorConverter.to_rgba(x)
except Exception:
pass
raise InvalidColorDef('invalid color definition: %s' % x)
hours = 3600.
days = hours*24
approx_months = days*30.5
approx_years = days*365
nice_time_tinc_inc_approx_units = {
'seconds': 1,
'months': approx_months,
'years': approx_years}
def nice_time_tick_inc(tinc_approx):
if tinc_approx >= approx_years:
return max(1.0, nice_value(tinc_approx / approx_years)), 'years'
elif tinc_approx >= approx_months:
nice = [1, 2, 3, 6]
for tinc in nice:
if tinc*approx_months >= tinc_approx or tinc == nice[-1]:
return tinc, 'months'
elif tinc_approx > days:
return nice_value(tinc_approx / days) * days, 'seconds'
elif tinc_approx >= 1.0:
nice = [
1., 2., 5., 10., 20., 30., 60., 120., 300., 600., 1200., 1800.,
1*hours, 2*hours, 3*hours, 6*hours, 12*hours, days, 2*days]
for tinc in nice:
if tinc >= tinc_approx or tinc == nice[-1]:
return tinc, 'seconds'
else:
return nice_value(tinc_approx), 'seconds'
def nice_time_tick_inc_approx_secs(tinc_approx):
v, unit = nice_time_tick_inc(tinc_approx)
return v * nice_time_tinc_inc_approx_units[unit]
def time_tick_labels(tmin, tmax, tinc, tinc_unit):
if tinc_unit == 'years':
tt = time.gmtime(int(tmin))
tmin_year = tt[0]
if tt[1:6] != (1, 1, 0, 0, 0):
tmin_year += 1
tmax_year = time.gmtime(int(tmax))[0]
tick_times_year = arange2(
math.ceil(tmin_year/tinc)*tinc,
math.floor(tmax_year/tinc)*tinc,
tinc).astype(int)
times = [
to_time_float(calendar.timegm((year, 1, 1, 0, 0, 0)))
for year in tick_times_year]
labels = ['%04i' % year for year in tick_times_year]
elif tinc_unit == 'months':
tt = time.gmtime(int(tmin))
tmin_ym = tt[0] * 12 + (tt[1] - 1)
if tt[2:6] != (1, 0, 0, 0):
tmin_ym += 1
tt = time.gmtime(int(tmax))
tmax_ym = tt[0] * 12 + (tt[1] - 1)
tick_times_ym = arange2(
math.ceil(tmin_ym/tinc)*tinc,
math.floor(tmax_ym/tinc)*tinc, tinc).astype(int)
times = [
to_time_float(calendar.timegm((ym // 12, ym % 12 + 1, 1, 0, 0, 0)))
for ym in tick_times_ym]
labels = [
'%04i-%02i' % (ym // 12, ym % 12 + 1) for ym in tick_times_ym]
elif tinc_unit == 'seconds':
imin = int(num.ceil(tmin/tinc))
imax = int(num.floor(tmax/tinc))
nticks = imax - imin + 1
tmin_ticks = imin * tinc
times = tmin_ticks + num.arange(nticks) * tinc
times = times.tolist()
if tinc < 1e-6:
fmt = '%Y-%m-%d.%H:%M:%S.9FRAC'
elif tinc < 1e-3:
fmt = '%Y-%m-%d.%H:%M:%S.6FRAC'
elif tinc < 1.0:
fmt = '%Y-%m-%d.%H:%M:%S.3FRAC'
elif tinc < 60:
fmt = '%Y-%m-%d.%H:%M:%S'
elif tinc < 3600.*24:
fmt = '%Y-%m-%d.%H:%M'
else:
fmt = '%Y-%m-%d'
nwords = len(fmt.split('.'))
labels = [time_to_str(t, format=fmt) for t in times]
labels_weeded = []
have_ymd = have_hms = False
ymd = hms = ''
for ilab, lab in reversed(list(enumerate(labels))):
words = lab.split('.')
if nwords > 2:
words[2] = '.' + words[2]
if float(words[2]) == 0.0: # or (ilab == 0 and not have_hms):
have_hms = True
else:
hms = words[1]
words[1] = ''
else:
have_hms = True
if nwords > 1:
if words[1] in ('00:00', '00:00:00'): # or (ilab == 0 and not have_ymd): # noqa
have_ymd = True
else:
ymd = words[0]
words[0] = ''
else:
have_ymd = True
labels_weeded.append('\n'.join(reversed(words)))
labels = list(reversed(labels_weeded))
if (not have_ymd or not have_hms) and (hms or ymd):
words = ([''] if nwords > 2 else []) + [
hms if not have_hms else '',
ymd if not have_ymd else '']
labels[0:0] = ['\n'.join(words)]
times[0:0] = [tmin]
return times, labels
[docs]def mpl_time_axis(axes, approx_ticks=5.):
'''
Configure x axis of a matplotlib axes object for interactive time display.
:param axes: Axes to be configured.
:type axes: :py:class:`matplotlib.axes.Axes`
:param approx_ticks: Approximate number of ticks to create.
:type approx_ticks: float
This function tries to use nice tick increments and tick labels for time
ranges from microseconds to years, similar to how this is handled in
Snuffler.
'''
from matplotlib.ticker import Locator, Formatter
class labeled_float(float):
pass
class TimeLocator(Locator):
def __init__(self, approx_ticks=5.):
self._approx_ticks = approx_ticks
Locator.__init__(self)
def __call__(self):
vmin, vmax = self.axis.get_view_interval()
return self.tick_values(vmin, vmax)
def tick_values(self, vmin, vmax):
if vmax < vmin:
vmin, vmax = vmax, vmin
if vmin == vmax:
return []
tinc_approx = (vmax - vmin) / self._approx_ticks
tinc, tinc_unit = nice_time_tick_inc(tinc_approx)
times, labels = time_tick_labels(vmin, vmax, tinc, tinc_unit)
ftimes = []
for t, label in zip(times, labels):
ftime = labeled_float(t)
ftime._mpl_label = label
ftimes.append(ftime)
return self.raise_if_exceeds(ftimes)
class TimeFormatter(Formatter):
def __call__(self, x, pos=None):
if isinstance(x, labeled_float):
return x._mpl_label
else:
return time_to_str(x, format='%Y-%m-%d %H:%M:%S.6FRAC')
axes.xaxis.set_major_locator(TimeLocator(approx_ticks=approx_ticks))
axes.xaxis.set_major_formatter(TimeFormatter())