The optimisers.highscore
module¶
-
class
grond.optimisers.highscore.optimiser.
SamplerDistributionChoice
(dummy) → str[source]¶ Any
str
out of['multivariate_normal', 'normal']
.
-
class
grond.optimisers.highscore.optimiser.
StandardDeviationEstimatorChoice
(dummy) → str[source]¶ Any
str
out of['median_density_single_chain', 'standard_deviation_all_chains', 'standard_deviation_single_chain']
.
-
class
grond.optimisers.highscore.optimiser.
SamplerPhase
(*args, **kwargs)[source]¶ Undocumented.
-
♦
niterations
¶ int
Number of iteration for this phase.
-
♦
ntries_preconstrain_limit
¶ int
, default:1000
Tries to find a valid preconstrained sample.
-
♦
seed
¶ int
, optionalRandom state seed.
-
♦
-
class
grond.optimisers.highscore.optimiser.
InjectionSamplerPhase
(*args, **kwargs)[source]¶ Undocumented.
-
♦
xs_inject
¶ numpy.ndarray
(pyrocko.guts_array.Array
)Array with the reference model.
-
♦
-
class
grond.optimisers.highscore.optimiser.
UniformSamplerPhase
(*args, **kwargs)[source]¶ Undocumented.
-
class
grond.optimisers.highscore.optimiser.
DirectedSamplerPhase
(*args, **kwargs)[source]¶ Undocumented.
-
♦
scatter_scale
¶ float
, optionalScales search radius around the current highscore models
-
♦
scatter_scale_begin
¶ float
, optionalScaling factor at beginning of the phase.
-
♦
scatter_scale_end
¶ float
, optionalScaling factor at the end of the directed phase.
-
♦
starting_point
¶ builtins.str
(SamplerStartingPointChoice
), default:'excentricity_compensated'
Tunes to the center value of the sampler distribution.May increase the likelihood to draw a highscore member model off-center to the mean value
-
♦
sampler_distribution
¶ builtins.str
(SamplerDistributionChoice
), default:'normal'
Distribution new models are drawn from.
-
♦
standard_deviation_estimator
¶ builtins.str
(StandardDeviationEstimatorChoice
), default:'median_density_single_chain'
-
♦
ntries_sample_limit
¶ int
, default:1000
-
♦
-
class
grond.optimisers.highscore.optimiser.
HighScoreOptimiserConfig
(**kwargs)[source]¶ Undocumented.
-
♦
sampler_phases
¶ list
ofSamplerPhase
objects, default:[<grond.optimisers.highscore.optimiser.UniformSamplerPhase object at 0x7fcb9a05b320>, <grond.optimisers.highscore.optimiser.DirectedSamplerPhase object at 0x7fcb9a05b390>]
Stages of the sampler: Start with uniform sampling of the model model space and narrow down through directed sampling.
-
♦
chain_length_factor
¶ float
, default:8.0
Controls the length of each chain: chain_length_factor * nparameters + 1
-
♦
nbootstrap
¶ int
, default:100
Number of bootstrap realisations to be tracked simultaneously in the optimisation.
-
♦
-
class
grond.optimisers.highscore.optimiser.
HighScoreOptimiser
(**kwargs)[source]¶ Monte-Carlo-based directed search optimisation with bootstrap.
-
♦
sampler_phases
¶ list
ofSamplerPhase
objects, default:[]
-
♦
chain_length_factor
¶ float
, default:8.0
-
♦
nbootstrap
¶ int
, default:100
-
♦
bootstrap_type
¶ builtins.str
(BootstrapTypeChoice
), default:'bayesian'
-
♦
bootstrap_seed
¶ int
, default:23
-
♦