1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

import logging 

import math 

import numpy as num 

from collections import OrderedDict 

 

import pyrocko.orthodrome as od 

 

from pyrocko.guts import (Object, Float, String, List, StringChoice, 

DateTimestamp) 

from pyrocko.model import Location 

 

guts_prefix = 'pf.gnss' 

logger = logging.getLogger('pyrocko.model.gnss') 

 

 

class GNSSComponent(Object): 

''' Component of a GNSSStation 

''' 

unit = StringChoice.T( 

choices=['mm', 'cm', 'm'], 

help='Unit of displacement', 

default='m') 

 

shift = Float.T( 

default=0., 

help='Component\'s shift in unit') 

 

sigma = Float.T( 

default=0., 

help='One sigma uncertainty of the measurement') 

 

def __add__(self, other): 

if not isinstance(other, self.__class__): 

raise AttributeError('Other has to be of instance %s' 

% self.__class__) 

comp = self.__class__() 

comp.shift = self.shift + other.shift 

comp.sigma = math.sqrt(self.sigma**2 + other.sigma**2) 

return comp 

 

def __iadd__(self, other): 

self.shift += other.shift 

self.sigma = math.sqrt(self.sigma**2 + other.sigma**2) 

return self 

 

 

class GNSSStation(Location): 

''' Representation of a GNSS station during a campaign measurement 

 

For more information see 

http://kb.unavco.org/kb/assets/660/UNAVCO_Campaign_GPS_GNSS_Handbook.pdf 

''' 

 

code = String.T( 

help='Four letter station code', 

optional=True) 

 

style = StringChoice.T( 

choices=['static', 'rapid_static', 'kinematic'], 

default='static') 

 

survey_start = DateTimestamp.T( 

optional=True, 

help='Survey start time') 

 

survey_end = DateTimestamp.T( 

optional=True, 

help='Survey end time') 

 

correlation_ne = Float.T( 

default=0., 

help='North-East component correlation') 

 

correlation_eu = Float.T( 

default=0., 

help='East-Up component correlation') 

 

correlation_nu = Float.T( 

default=0., 

help='North-Up component correlation') 

 

north = GNSSComponent.T( 

optional=True) 

 

east = GNSSComponent.T( 

optional=True) 

 

up = GNSSComponent.T( 

optional=True) 

 

def __eq__(self, other): 

try: 

return self.code == other.code 

except AttributeError: 

return False 

 

def get_covariance_matrix(self): 

components = self.components.values() 

ncomponents = self.ncomponents 

 

covar = num.zeros((ncomponents, ncomponents)) 

for ic1, comp1 in enumerate(components): 

for ic2, comp2 in enumerate(components): 

corr = self._get_comp_correlation(comp1, comp2) 

covar[ic1, ic2] = corr * comp1.sigma * comp2.sigma 

 

# This floating point operation is inaccurate: 

# corr * comp1.sigma * comp2.sigma != corr * comp2.sigma * comp1.sigma 

# 

# Hence this identity 

covar[num.tril_indices_from(covar, k=-1)] = \ 

covar[num.triu_indices_from(covar, k=1)] 

 

return covar 

 

def get_correlation_matrix(self): 

components = self.components.values() 

ncomponents = self.ncomponents 

 

corr = num.zeros((ncomponents, ncomponents)) 

corr[num.diag_indices_from(corr)] = num.array( 

[c.sigma for c in components]) 

 

for ic1, comp1 in enumerate(components): 

for ic2, comp2 in enumerate(components): 

if comp1 is comp2: 

continue 

corr[ic1, ic2] = self._get_comp_correlation(comp1, comp2) 

 

# See comment at get_covariance_matrix 

corr[num.tril_indices_from(corr, k=-1)] = \ 

corr[num.triu_indices_from(corr, k=1)] 

 

return corr 

 

def get_displacement_data(self): 

return num.array([c.shift for c in self.components.values()]) 

 

def get_component_mask(self): 

return num.array( 

[False if self.__getattribute__(name) is None else True 

for name in ('north', 'east', 'up')], dtype=num.bool) 

 

@property 

def components(self): 

return OrderedDict( 

[(name, self.__getattribute__(name)) 

for name in ('north', 'east', 'up') 

if self.__getattribute__(name) is not None]) 

 

@property 

def ncomponents(self): 

return len(self.components) 

 

def _get_comp_correlation(self, comp1, comp2): 

if comp1 is comp2: 

return 1. 

 

s = self 

 

correlation_map = { 

(s.north, s.east): s.correlation_ne, 

(s.east, s.up): s.correlation_eu, 

(s.north, s.up): s.correlation_nu 

} 

 

return correlation_map.get( 

(comp1, comp2), 

correlation_map.get((comp2, comp1), False)) 

 

 

class GNSSCampaign(Object): 

 

stations = List.T( 

GNSSStation.T(), 

help='List of GNSS campaign measurements') 

 

name = String.T( 

help='Campaign name', 

default='Unnamed campaign') 

 

survey_start = DateTimestamp.T( 

optional=True) 

 

survey_end = DateTimestamp.T( 

optional=True) 

 

def __init__(self, *args, **kwargs): 

Object.__init__(self, *args, **kwargs) 

self._cov_mat = None 

self._cor_mat = None 

 

def add_station(self, station): 

self._cor_mat = None 

self._cov_mat = None 

return self.stations.append(station) 

 

def remove_station(self, station_code): 

try: 

station = self.get_station(station_code) 

self.stations.remove(station) 

self._cor_mat = None 

self._cov_mat = None 

except ValueError: 

logger.warn('Station {} does not exist in campaign, ' 

'do nothing.'.format(station_code)) 

 

def get_station(self, station_code): 

for sta in self.stations: 

if sta.code == station_code: 

return sta 

raise ValueError('Could not find station %s' % station_code) 

 

def get_center_latlon(self): 

return od.geographic_midpoint_locations(self.stations) 

 

def get_radius(self): 

coords = self.coordinates 

return od.distance_accurate50m( 

coords[:, 0].min(), coords[:, 1].min(), 

coords[:, 0].max(), coords[:, 1].max()) / 2. 

 

def get_covariance_matrix(self): 

if self._cov_mat is None: 

ncomponents = self.ncomponents 

cov_arr = num.zeros((ncomponents, ncomponents)) 

 

idx = 0 

for ista, sta in enumerate(self.stations): 

ncomp = sta.ncomponents 

cov_arr[idx:idx+ncomp, idx:idx+ncomp] = \ 

sta.get_covariance_matrix() 

idx += ncomp 

 

self._cov_mat = cov_arr 

return self._cov_mat 

 

def get_correlation_matrix(self): 

if self._cor_mat is None: 

ncomponents = self.ncomponents 

cor_arr = num.zeros((ncomponents, ncomponents)) 

 

idx = 0 

for ista, sta in enumerate(self.stations): 

ncomp = sta.ncomponents 

cor_arr[idx:idx+ncomp, idx:idx+ncomp] = \ 

sta.get_correlation_matrix() 

idx += ncomp 

 

self._cor_mat = cor_arr 

return self._cor_mat 

 

def get_component_mask(self): 

return num.concatenate( 

[s.get_component_mask() for s in self.stations]) 

 

def dump(self, *args, **kwargs): 

self.regularize() 

return Object.dump(self, *args, **kwargs) 

 

@property 

def coordinates(self): 

return num.array([loc.effective_latlon for loc in self.stations]) 

 

@property 

def nstations(self): 

return len(self.stations) 

 

@property 

def ncomponents(self): 

return sum([s.ncomponents for s in self.stations])