1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

import numpy as num 

import logging 

 

from pyrocko import gf, util 

from pyrocko.guts import String, Float, Dict, Int 

 

from grond.meta import expand_template, Parameter, has_get_plot_classes 

 

from ..base import Problem, ProblemConfig 

 

guts_prefix = 'grond' 

logger = logging.getLogger('grond.problems.rectangular.problem') 

km = 1e3 

as_km = dict(scale_factor=km, scale_unit='km') 

 

 

class RectangularProblemConfig(ProblemConfig): 

 

ranges = Dict.T(String.T(), gf.Range.T()) 

decimation_factor = Int.T(default=1) 

distance_min = Float.T(default=0.) 

nthreads = Int.T(default=4) 

 

def get_problem(self, event, target_groups, targets): 

if self.decimation_factor != 1: 

logger.warn( 

'Decimation factor for rectangular source set to %i. Results ' 

'may be inaccurate.' % self.decimation_factor) 

 

base_source = gf.RectangularSource.from_pyrocko_event( 

event, 

anchor='top', 

decimation_factor=self.decimation_factor) 

 

subs = dict( 

event_name=event.name, 

event_time=util.time_to_str(event.time)) 

 

problem = RectangularProblem( 

name=expand_template(self.name_template, subs), 

base_source=base_source, 

distance_min=self.distance_min, 

target_groups=target_groups, 

targets=targets, 

ranges=self.ranges, 

norm_exponent=self.norm_exponent, 

nthreads=self.nthreads) 

 

return problem 

 

 

@has_get_plot_classes 

class RectangularProblem(Problem): 

 

problem_parameters = [ 

Parameter('east_shift', 'm', label='Easting', **as_km), 

Parameter('north_shift', 'm', label='Northing', **as_km), 

Parameter('depth', 'm', label='Depth', **as_km), 

Parameter('length', 'm', label='Length', optional=False, **as_km), 

Parameter('width', 'm', label='Width', optional=False, **as_km), 

Parameter('slip', 'm', label='Slip', optional=False), 

Parameter('strike', 'deg', label='Strike'), 

Parameter('dip', 'deg', label='Dip'), 

Parameter('rake', 'deg', label='Rake') 

] 

 

problem_waveform_parameters = [ 

Parameter('nucleation_x', 'offset', label='Nucleation X'), 

Parameter('nucleation_y', 'offset', label='Nucleation Y'), 

Parameter('time', 's', label='Time'), 

Parameter('velocity', 'm/s', label='Rupture Velocity') 

] 

 

dependants = [] 

 

distance_min = Float.T(default=0.0) 

 

def pack(self, source): 

arr = self.get_parameter_array(source) 

for ip, p in enumerate(self.parameters): 

if p.name == 'time': 

arr[ip] -= self.base_source.time 

return arr 

 

def get_source(self, x): 

d = self.get_parameter_dict(x) 

p = {} 

for k in self.base_source.keys(): 

if k in d: 

p[k] = float( 

self.ranges[k].make_relative(self.base_source[k], d[k])) 

 

source = self.base_source.clone(**p) 

 

return source 

 

def random_uniform(self, xbounds, rstate, fixed_magnitude=None): 

x = num.zeros(self.nparameters) 

for i in range(self.nparameters): 

x[i] = rstate.uniform(xbounds[i, 0], xbounds[i, 1]) 

 

return x 

 

def preconstrain(self, x): 

# source = self.get_source(x) 

# if any(self.distance_min > source.distance_to(t) 

# for t in self.targets): 

# raise Forbidden() 

return x 

 

@classmethod 

def get_plot_classes(cls): 

plots = super(RectangularProblem, cls).get_plot_classes() 

return plots 

 

 

__all__ = ''' 

RectangularProblem 

RectangularProblemConfig 

'''.split()