Source code for grond.targets.gnss_campaign.target

import logging
import numpy as num
from scipy import linalg as splinalg

from pyrocko import gf
from pyrocko.guts import String, Dict, List, Int

from ..base import MisfitConfig, MisfitTarget, MisfitResult, TargetGroup
from grond.meta import has_get_plot_classes

guts_prefix = 'grond'
logger = logging.getLogger('grond.target').getChild('gnss_campaign')


[docs]class GNSSCampaignMisfitResult(MisfitResult): """Carries the observations for a target and corresponding synthetics. """ statics_syn = Dict.T(optional=True, help='Synthetic gnss surface displacements') statics_obs = Dict.T(optional=True, help='Observed gnss surface displacements')
[docs]class GNSSCampaignMisfitConfig(MisfitConfig): pass
[docs]class GNSSCampaignTargetGroup(TargetGroup): """Handles static displacements from campaign GNSS observations, e.g GPS. Station information, displacements and measurement errors are provided in a `yaml`-file (please find an example in the documentation). The measurement errors may consider correlations between components of a station, but correlations between single stations is not considered. """ gnss_campaigns = List.T( optional=True, help='List of individual campaign names' ' (`name` in `gnss.yaml` files).') misfit_config = GNSSCampaignMisfitConfig.T() def get_targets(self, ds, event, default_path='none'): logger.debug('Selecting GNSS targets...') targets = [] for camp in ds.get_gnss_campaigns(): if camp.name not in self.gnss_campaigns and\ '*all' not in self.gnss_campaigns: continue if not isinstance(self.misfit_config, GNSSCampaignMisfitConfig): raise AttributeError('misfit_config must be of type' ' GNSSCampaignMisfitConfig.') lats = num.array([s.lat for s in camp.stations]) lons = num.array([s.lon for s in camp.stations]) north_shifts = num.array([s.north_shift for s in camp.stations]) east_shifts = num.array([s.east_shift for s in camp.stations]) gnss_target = GNSSCampaignMisfitTarget( quantity='displacement', campaign_name=camp.name, lats=lats, lons=lons, east_shifts=east_shifts, north_shifts=north_shifts, ncomponents=camp.ncomponents, tsnapshot=None, interpolation=self.interpolation, store_id=self.store_id, normalisation_family=self.normalisation_family, path=self.path or default_path, misfit_config=self.misfit_config) gnss_target.set_dataset(ds) targets.append(gnss_target) return targets
[docs]@has_get_plot_classes class GNSSCampaignMisfitTarget(gf.GNSSCampaignTarget, MisfitTarget): """Handles and carries out operations related to the objective functions. The objective function is here the weighted misfit between observed and predicted surface displacements. """ campaign_name = String.T() ncomponents = Int.T(optional=True) misfit_config = GNSSCampaignMisfitConfig.T() can_bootstrap_weights = True can_bootstrap_residuals = True plot_misfits_cumulative = False def __init__(self, **kwargs): gf.GNSSCampaignTarget.__init__(self, **kwargs) MisfitTarget.__init__(self, **kwargs) self._obs_data = None self._sigma = None self._weights = None self._correlated_weights = None self._station_component_mask = None @property def id(self): return self.campaign_name def string_id(self): return self.campaign_name def misfits_string_ids(self): id_list = [] for station in self.campaign.stations: for name in ('north', 'east', 'up'): component = station.__getattribute__(name) if not component: continue id_list.append('%s.%s.%s' % (self.path, station.code, name[0].upper())) return id_list @property def station_names(self): return ['%s' % (station.code) for station in self.campaign.stations] @property def nmisfits(self): if self.ncomponents is None: try: self.campaign.ncomponents except ValueError: raise ValueError('Set the dataset!') return self.ncomponents @property def nstations(self): return self.lats.size def set_dataset(self, ds): MisfitTarget.set_dataset(self, ds) def get_correlated_weights(self, nthreads=0): if self._correlated_weights is None: self._correlated_weights = splinalg.sqrtm(self.weights) return self._correlated_weights @property def campaign(self): return self._ds.get_gnss_campaign(self.campaign_name) @property def obs_data(self): if self._obs_data is None: self._obs_data = num.concatenate( [s.get_displacement_data() for s in self.campaign.stations]) return self._obs_data @property def obs_sigma(self): if self._sigma is None: self._sigma = num.array([ [s.north.sigma for s in self.campaign.stations], [s.east.sigma for s in self.campaign.stations], [s.up.sigma for s in self.campaign.stations]])\ .ravel(order='F') return self._sigma @property def weights(self): """Weights are the square-rooted, inverted the data error variance-covariance. The single component variances, and if provided the component covariances, are used to build a data variance matrix or variance-covariance matrix. This matrix has the size for all possible NEU components, but throws zeros for not given components, also recorded in the _station_component_mask. """ if self._weights is None: covar = self.campaign.get_covariance_matrix() if not num.any(covar.diagonal()): logger.warning('GNSS Stations have an empty covariance matrix.' ' Weights will be all equal.') num.fill_diagonal(covar, 1.) self._weights = num.asmatrix(covar).I return self._weights @property def station_component_mask(self): if self._station_component_mask is None: self._station_component_mask = self.campaign.get_component_mask() return self._station_component_mask @property def station_weights(self): weights = num.diag(self.weights) return num.mean([weights[0::3], weights[1::3], weights[2::3]], axis=0) def component_weights(self): ws = num.sum(self.weights, axis=0) return ws
[docs] def post_process(self, engine, source, statics): """Applies the objective function. As a result the weighted misfits are given and the observed and synthetic data. """ obs = self.obs_data # All data is ordered in vectors as # S1_n, S1_e, S1_u, ..., Sn_n, Sn_e, Sn_u. Hence (.ravel(order='F')) syn = num.array([ statics['displacement.n'], statics['displacement.e'], -statics['displacement.d']])\ .ravel(order='F') syn = syn[self.station_component_mask] res = obs - syn misfit_value = res misfit_norm = obs mf = num.vstack((misfit_value, misfit_norm)).T result = GNSSCampaignMisfitResult( misfits=mf) if self._result_mode == 'full': result.statics_syn = statics result.statics_obs = obs return result
[docs] def get_combined_weight(self): """A given manual weight in the configuration is applied.""" if self._combined_weight is None: self._combined_weight = num.full(self.nmisfits, self.manual_weight) return self._combined_weight
def init_bootstrap_residuals(self, nbootstraps, rstate=None, nthreads=0): logger.info('GNSS campaign %s, bootstrapping residuals' ' from measurement uncertainties ...' % self.campaign.name) if rstate is None: rstate = num.random.RandomState() campaign = self.campaign bootstraps = num.empty((nbootstraps, self.ncomponents)) sigmas = num.diag(num.sqrt(campaign.get_covariance_matrix())) if not num.all(sigmas): logger.warning('Bootstrapping GNSS stations is meaningless,' ' all station\'s sigma are 0.0!') for ibs in range(nbootstraps): syn_noise = rstate.normal(scale=sigmas.ravel()) bootstraps[ibs, :] = syn_noise self.set_bootstrap_residuals(bootstraps) @classmethod def get_plot_classes(cls): from . import plot plots = super(GNSSCampaignMisfitTarget, cls).get_plot_classes() plots.extend(plot.get_plot_classes()) return plots