Source code for grond.problems.rectangular.problem

import numpy as num
import logging

from pyrocko import gf, util
from pyrocko.guts import String, Float, Dict, Int, Bool

from grond.meta import expand_template, Parameter, has_get_plot_classes

from ..base import Problem, ProblemConfig
from .. import CMTProblem

guts_prefix = 'grond'
logger = logging.getLogger('grond.problems.rectangular.problem')
km = 1e3
as_km = dict(scale_factor=km, scale_unit='km')


[docs] class RectangularProblemConfig(ProblemConfig): ranges = Dict.T(String.T(), gf.Range.T()) decimation_factor = Int.T(default=1) distance_min = Float.T(default=0.) nthreads = Int.T(default=4) point_source_target_balancing = Bool.T( default=False, help='If ``True``, target balancing (if used) is performed on a ' 'moment tensor point source at the events location. It increases ' 'the speed, but might lead to not fully optimized target weights.' )
[docs] def get_problem(self, event, target_groups, targets): if self.decimation_factor != 1: logger.warning( 'Decimation factor for rectangular source set to %i. Results ' 'may be inaccurate.' % self.decimation_factor) base_source = gf.RectangularSource.from_pyrocko_event( event, anchor='top', decimation_factor=self.decimation_factor) subs = dict( event_name=event.name, event_time=util.time_to_str(event.time)) cmt_problem = None if self.point_source_target_balancing: base_source_cmt = gf.MTSource.from_pyrocko_event(event) stf = gf.HalfSinusoidSTF() stf.duration = event.duration or 0.0 base_source_cmt.stf = stf ranges = dict( time=self.ranges['time'], north_shift=self.ranges['north_shift'], east_shift=self.ranges['east_shift'], depth=self.ranges['depth'], magnitude=gf.Range( start=event.magnitude - 1., stop=event.magnitude + 1.), duration=gf.Range(start=0., stop=stf.duration * 2.), rmnn=gf.Range(start=-1.41421, stop=1.41421), rmee=gf.Range(start=-1.41421, stop=1.41421), rmdd=gf.Range(start=-1.41421, stop=1.41421), rmne=gf.Range(start=-1., stop=1.), rmnd=gf.Range(start=-1., stop=1.), rmed=gf.Range(start=-1., stop=1.)) cmt_problem = CMTProblem( name=expand_template(self.name_template, subs), base_source=base_source_cmt, distance_min=self.distance_min, target_groups=target_groups, targets=targets, ranges=ranges, mt_type='dc', stf_type='HalfSinusoidSTF', norm_exponent=self.norm_exponent, nthreads=self.nthreads) problem = RectangularProblem( name=expand_template(self.name_template, subs), base_source=base_source, distance_min=self.distance_min, target_groups=target_groups, targets=targets, ranges=self.ranges, norm_exponent=self.norm_exponent, nthreads=self.nthreads, cmt_problem=cmt_problem) return problem
[docs] @has_get_plot_classes class RectangularProblem(Problem): problem_parameters = [ Parameter('east_shift', 'm', label='Easting', **as_km), Parameter('north_shift', 'm', label='Northing', **as_km), Parameter('depth', 'm', label='Depth', **as_km), Parameter('length', 'm', label='Length', optional=False, **as_km), Parameter('width', 'm', label='Width', optional=False, **as_km), Parameter('slip', 'm', label='Slip', optional=False), Parameter('strike', 'deg', label='Strike'), Parameter('dip', 'deg', label='Dip'), Parameter('rake', 'deg', label='Rake') ] problem_waveform_parameters = [ Parameter('nucleation_x', 'offset', label='Nucleation X'), Parameter('nucleation_y', 'offset', label='Nucleation Y'), Parameter('time', 's', label='Time'), Parameter('velocity', 'm/s', label='Rupture Velocity') ] dependants = [] distance_min = Float.T(default=0.0) cmt_problem = Problem.T(optional=True) def set_engine(self, engine): self._engine = engine if self.cmt_problem is not None: self.cmt_problem.set_engine(engine) def pack(self, source): arr = self.get_parameter_array(source) for ip, p in enumerate(self.parameters): if p.name == 'time': arr[ip] -= self.base_source.time return arr def get_source(self, x): d = self.get_parameter_dict(x) p = {} for k in self.base_source.keys(): if k in d: p[k] = float( self.ranges[k].make_relative(self.base_source[k], d[k])) source = self.base_source.clone(**p) return source def random_uniform(self, xbounds, rstate, fixed_magnitude=None): x = num.zeros(self.nparameters) for i in range(self.nparameters): x[i] = rstate.uniform(xbounds[i, 0], xbounds[i, 1]) return x def preconstrain(self, x, optimizer=False): # source = self.get_source(x) # if any(self.distance_min > source.distance_to(t) # for t in self.targets): # raise Forbidden() return x @classmethod def get_plot_classes(cls): plots = super(RectangularProblem, cls).get_plot_classes() return plots
__all__ = ''' RectangularProblem RectangularProblemConfig '''.split()