Source inversion in seismology

Simone Cesca¹, Sebastian Heimann², Gesa Petersen¹, Pinar Büyükakpinar^{1,2}, Daniela Kühn^{1,3} 1. GFZ Potsdam, 2. University of Potsdam, 3. NORSAR, Norway Potsdam, 29.6.2023

Source inversion team

Dr. Gesa Petersen Dr. Sebastian Heimann GFZ Potsdam Univ. Potsdam

Dr. Daniela Kühn GFZ Potsdam, Norsar

Dr. Pinar Büyükakpinar Dr. Simone Cesca GFZ, Univ. Potsdam

GFZ Potsdam

From seismograms to the earthquake source M6.5 M6.5wana 876 km IU LSZ R ejected 876 km IU LSZ T 876 km IU LSZ Z 17:35 17:40 17:45 17:50 Apr 03, 2017

From seismograms to the earthquake source M6.5 M6.2wana 876 km IU LSZ R 876 km IU LSZ T 876 km IU LSZ Z 17:40 17:45 17:35 17:50 Арг 03, 2017

From seismograms to the earthquake source M6.5 M6.2wana 876 km IU LSZ R Rejected 876 km IU LSZ T 876 km IU LSZ Z 17:40 17:45 17:35 17:50 Арг 03, 2017

From seismograms to the earthquake source M6.5 M6.2wana 876 km IU LSZ R Rejected 876 km IU LSZ T 876 km IU LSZ Z 17:35 17:40 17:45 17:50 Арг 03, 2017

From seismograms to the earthquake source M6.5 M6.5wana 876 km IU LSZ R 876 km IU LSZ T 876 km IU LSZ Z 17:35 17:40 17:45 17:50 Apr 03, 2017

Our task, what do we need?

SOURCE MODEL

We need to define an earthquake source model (or more than one), and the parameters which describe it

SOURCE MODEL

We need to define an earthquake source model (or more than one), and the parameters which describe it

Slip map 1977 Izmit, Turkey, earthquake) Li et al. 2002

> 80 (b)

> > (m)

6

Our task, what do we need?

SOURCE MODEL

We need to define an earthquake source model (or more than one), and the parameters which describe it

SYNTHETIC SEISMOGRAMS (FORWARD MODEL)

We need to establish how to simulate the effects of a given source model; for example, to compute synthetic seismograms at the Earth's surface

Our task, what do we need?

SOURCE MODEL

We need to define an earthquake source model (or more than one), and the parameters which describe it

SYNTHETIC SEISMOGRAMS (FORWARD MODEL)

We need to establish how to simulate the effects of a given source model; for example, to compute synthetic seismograms at the Earth's surface

INVERSION FRAMEWORK (INVERSE PROBLEM)

We need to choose how to compare modeled and observed effects (e.g. synthetic and observed waveforms) and how to use this information to retrieve the most likely source model

Inversion framework

data vs. synthetics

Bad fit (bad solution)

Good fit (good solution)

Source inversion layout

Source inversion layout

The seismic source, point source models

A point source model is justified in the far field approximation:

Source-Receiver distance >> Rupture size

Considered wavelength >> Rupture size

Two types of point sources are most commonly used

The double couple (DC) source model

The moment tensor (MT) source model

Source & source parameters

Centroid location (Lat, Lon, Depth)

Scalar moment and magnitude

Strike, Dip, Rake

Non-shear and Isotropic components

Rupture Duration

Source Time Function

Shape and size of the rupture area

Rupture Velocity

Source parameters: Lat, Lon, Depth, Origin time

Source parameters: Lat, Lon, Depth, Origin time, Strike, Dip

Source parameters: Lat, Lon, Depth, Origin time

Source parameters: Lat, Lon, Depth, Origin time, Strike, Dip, Rake

Source parameters: Lat, Lon, Depth, Origin time, Strike, Dip, Rake, Scalar Moment

DC model, shear faulting

After Stein & Wysession 2003

DC model, focal sphere

DC model, shear faulting

After Stein & Wysession 2003

DC model, radiation pattern

From DC to MT source

Volcanic and induced earthquakes, explosions, deep earthquakes, as well as complex tectonic earthquake ruptures require a more general source model

HELMHOLTZ

The seismic moment tensor (MT) source

- Symmetric tensor
- 6 independent parameters M_{ij}
- Relation with scalar moment:

 $M_{ij} = M_0 m_{ij}$

On moment tensor decomposition

Full MT 6 parameters (Mij)

Mxx	Mxy	Mxz
Мух	Myy	Myz
Mzx	Mzy	Mzz

On moment tensor decomposition

Volumetric change at the source

No net volume change

On moment tensor decomposition

Examples of non-DC components

Origin of non-DC components

Common ISO=0 constraint for natural earthquakes (e.g. Global CMT)

non-DC terms:

Waveform propagation mismodeling

Poor network configurations and data quality

Complex source process

Challenges of moment tensor interpretation

Find the correct decomposition

Beyond point sources, source time function (STF)

Implementing unusual STFs

b

02:39 min

∆15:26 min

Beyond point sources, finite sources

A finite source model along a surface A can be represented by means of point sources (DC or MT) distributed along that surface

To reproduce rupture propagation effects, each point source is activated at its own time (i.e. when the rupture front reach that point)

Apparent STF, earthquake directivity

Apparent STF, earthquake directivity

Beyond usual sources...

30°30'N

Source inversion layout

Green's functions (GFs) and databases (GFDB)

GFs are the Earth response at a receiver to a simple excitation at the earthquake source.

GFs can be seen as elementary seismograms

GFs describe the seismic wave propagation from source to receiver and depend on the velocity model

Green's functions in 1D media

Symmetry of the 1D velocity model:

GFs only depend on source depth (z) and source-receiver distance (x)

The response of any MT source can be computed as lineal combination of 10 Gfs

We can calculate those in advance, and store them in a database

Green's functions database

The 1D model symmetry allow to develop a GF database concept GFs are pre-calculated and ready to use for the inversion

Green's functions example

How do GFs look like? Offshore SW Portugal, z = 40 km, d = 100 km, 2 velocity models

Source inversion layout

Source inversion layout

Data access and data processing

data download

data processing

- Data search (event, stations, waveform selection)
- Data download/access
- Metadata download/access (station and instrument information)
- Demean, detrend, filter
- Deconvolution of instrumental response
 (→ true velocities or displacements)
- Data quality assessment

Source inversion layout

Inversion, general concept

Heimann 2011

Inversion, general concept

Heimann 2011

Inversion, first motion polarity

Only sign of first motion P

Inversion, first motion polarity

Inversion, bodywave amplitudes

P amplitudes, S amplitudes, and S/P amplitudes ratio

Inversion, bodywave amplitudes and ratios

Full waveforms

- \rightarrow consider full data information
- → fitting require good velocity model, or fit low frequency waveforms
- \rightarrow trace alignment may be needed

Amplitude spectra

Full waveform inversion, no filter

Full waveform inversion, filter 10-100 s

Full waveform inversion, filter 30-100 s

Amplitude spectra

Joint data inversion

Inversion, general concept

Heimann 2011

Source inversion using Grond

https://pyrocko.org/ doi:10.5880/GFZ.2.1.2018.003

Grond

Source inversion algorithm (S. Heimann, Uni Potsdam)

Simultaneous determination of multiple source parameters

Flexible

- → Source model
- → (Joint) datasets
- → Fitting procedure
- → Weighting
- → Iterative approach

Uniform phase (random search) Transition phase (mixed search) Explorative phase (guided search)

Simultaneous bootstrap simulation

Flexible data fitting

time traces

CC traces

amplitude spectra

envelopes

absolute amplitudes

P/S amplitude ratios

Different source models

CMTProblem

It solves for a centroid moment tensor point source (DC, deviatoric, full MT). This problem fits the very general earthquake source analysis.

DoubleDCProblem

It solves for two double-couple point sources. Useful e.g. for complex, segmented earthquake sources.

RectangularProblem

It solves for a rectangular finite source. Analysis of large earthquakes and/or problems for which near-field surface displacement data (InSAR, GNSS, etc.) are available.

VolumePointProblem

It solves for a spherical volume point (infinite) to model magmatic or volcanic processes. Only static targets (GNSS or InSAR) are supported.

Other source models can be implemented

Double single force for landslides, damped oscillator for resonating reservoirs/conduits, ...

Grond uncertainties

Grond graphical output

Grond graphical output

Grond graphical output

Source inversion in seismology

Simone Cesca¹, Sebastian Heimann², Gesa Petersen¹, Pinar Büyükakpinar^{1,2}, Daniela Kühn^{1,3} 1. GFZ Potsdam, 2. University of Potsdam, 3. NORSAR, Norway Potsdam, 29.6.2023