Pyrocko

Pyrocko: A Versatile Software Framework for Seismology

Sebastian Heimann1, Marius Kriegerowski1, Marius P. Isken2, Simone Cesca1, Nima Nooshiri1, Andreas Seinberg2, Henriette Sudhaus2, Hannes M. Vasyura-Bathke3, Torsten Dahm1

1Geoforschungszentrum Potsdam, Germany, 2Carl-Christian-Albrecht Universität zu Kiel, Germany, 3King Abdullah University of Science and Technology, Saudi Arabia

Introduction

Pyrocko is an open-source seismology toolbox and library, written in the Python programming language. It can be utilized flexibly for a variety of geophysical tasks, like seismological data processing and analysis, modelling of waveforms, InSAR or GPS displacement data, or for seismic source characterization.

At its core, Pyrocko is a library and framework providing building blocks for researchers and students wishing to develop their own applications.

This poster gives a glimpse of Pyrocko’s features, for more examples and tutorials visit http://pyrocko.org.

Waveform Processing

With Pyrocko you can read, handle and write many different file formats such as MiniSEED, SAC, SEISAN, GSE1/2, SEG-Y and many more. Your local waveform archives can be organized, accessed and batch-processed through `pyrocko.pile` in a memory-efficient way.

```python
from pyrocko import pile
p = pile.pile(['project_folder/']) # or thousands of filenames here
for traces in p.chopper(tmin=tmin, tinc=tinc, tpad=tpad):
    for tr in traces:
        tr.downsample_to(target_deltat, snap=True, demean=False)
```

Listing 1: Example how a pile of waveform data is build, and chops of traces are downsampled efficiently.

With **Sniffer** you interactively browse through your seismograms, maybe be your big archives or small datasets. Sniffer features plug-ins (snuffling) that provide you with a broad variety of seismological applications. A selection of features include:

- Event and phase picking and management
- Earthquake cluster analysis
- Beamforming
- Cross-correlation of traces
- Station network mapping
- Synthetic travel-time markers
- Interactive synthetic waveform modeling

Datasets

The `pyrocko.dataset` submodule gives convenient access to useful online and offline geo datasets:

- **Seismic velocity models** through CRUST2.0 and the Global Crustal Database (USGS).
- **DEM data** from ETOPO1 and SRTM3.
- **Tectonic datasets** include a plate boundary model *PeterBird2003* and global strain rate model *GSRM1*.
- **Geographical data** from the GSHHG coast-line database and Geonames.org, (city names and population)

Clients and Data Access

Online waveform data archives from different institutions can be accessed through the FDSN protocol - popular providers are pre-configured in Pyrocko (e.g. IRIS, Geofon).

Earthquake catalog data from Geofon, GlobalCMT, USGS and more.

GPS position data served by the National Geodetic Lab of the University of Nevada, Reno can be accessed.

Travel-Time Calculations

Cake is a very tasty tool for 1D travel-time and ray-path computations. You can use it to solve classical seismic ray theory problems for layered-earth models (layer cake models) on a spherical Earth.

E.g. for various seismic phases Cake calculates:

- Phase arrival times
- Ray paths
- Reflection and transmission coefficients
- Take-off and incidence angles

This is an example of how a pile of waveform data is built, and chops of traces are downsampled efficiently.

Forward Modelling

Use **Fomosto** and **pyrocko.gf** to calculate Green’s functions (GF) tailored to your earth model and problem. The GFs are stored and managed in ready-to-use databases. In this way you can separate the computationally expensive operation from any source modelling. Pyrocko wraps different numerical forward-modelling codes, such as QSEIS, QSSP and PSSRN/PSCMP to calculate Green’s function databases.

Pyrocko provides a broad variety of seismological features (plug-ins) that can be big archives or small datasets. **Snuffer** interactively browses through your seismograms, may be your big archives or small datasets. Sniffer features plug-ins that provide you with a broad variety of seismological applications.

Pyrocko is an open-source seismology toolbox and library, written in the Python programming language. It can be utilized flexibly for a variety of geophysical tasks, like seismological data processing and analysis, modelling of waveforms, InSAR or GPS displacement data, or for seismic source characterization.

At its core, **Pyrocko** is a library and framework providing building blocks for researchers and students wishing to develop their own applications.

This poster gives a glimpse of **Pyrocko**’s features, for more examples and tutorials visit http://pyrocko.org.

Ecosystem

In Pyrocko’s wake the development of seismological software thrives:

- **Grond** – The Earthquake Buster. Probabilistic source optimisation from waveform and geodetic data.
- **Lassie** – A friendly Earthquake Detector. Even shifts the fastest tremor.
- **BEAT** – Bayesian Earthquake Analysis Tool. Source optimisation from geodetic and seismic data.
- **Talpa** – Interactive Static Source Modelling. Analytical and numerical displacement source modelling.
- **Automap** – Beautiful Maps from GMT. Swiftly create informational maps through Pyrocko.
- **Jackseis** – Waveform archive data manipulation.

The Seismologist’s Swiss Army Knife

Selected References

