Pyrocko

A Versatile Software Framework for Seismology

Sebastian Heimann¹, Marius Kriegerowski¹, Marius P. Isken², Simone Cesca¹, Nima Nooshiri¹, Andreas Seinberg², Henriette Sudhaus², Hannes M. Vasyura-Bathke³, Torsten Dahm¹ Geoforschungszentrum Potsdam, Germany, ²Carl-Christian-Albrecht Universität zu Kiel, Germany, ³King Abdullah University of Science and Technology, Saudi Arabia

Introduction

Pyrocko is an open source seismology toolbox and library, written in the Python programming language. It can be utilized flexibly for a variety of geophysical tasks, like seismological data processing and analysis, modelling of waveforms, InSAR or GPS displacement data, or for seismic source characterization.

At its core, Pyrocko is a library and framework providing building blocks for researchers and students wishing to develop their own applications.

This poster gives a glimpse of Pyrocko's features, for more examples and tutorials visit http//pyrocko.org.

Waveform Processing

With Pyrocko you can read, handle and write many different file formats such as MiniSEED, SAC, SEISAN, GSE1/2, SEG-Y and many more. Your local waveform archives can be organized, accessed and batch-processed through pyrocko.pile in a memory-efficient way.

from pyrocko import pile

p = pile.make_pile(['project_folder/']) # or thousands of filenames here

for traces in p.chopper(tmin=tmin, tinc=tinc, tpad=tpad):
 for tr in traces:
 tr.downsample_to(target_deltat, snap=True, demean=False)

Listing 1: Example how a pile of waveform data is build, and chops of traces are downsampled efficiently.

With **Snuffler** you interactively browse through your seismograms, may they be big archives or small datasets. Snuffler features plug-ins (*snufflings*) that provide you with a broad variety of seismological applications. A selection of features include:

- Event and phase picking and management
- Easthquake cluster analysis
- Beamforming
- Cross-correlation of traces
- Station network mapping
- Synthetic travel-time markers
- Interactive synthetic waveform modelling

Clients and Data Access

Online waveform data archives from different institutions can be accessed throught the **FDSN protocol** - popular providers are pre-configured in Pyrocko (e.g. *IRIS*, *Geofon*).

Earthquake catalog data from Geofon, GlobalCMT, USGS and more.

GPS position data served by the National Geodetic Lab of the University of Nevada, Rheno can be accessed.

Datasets

The pyrocko.dataset submodule gives convinient access to useful online and offline geo datasets:

Seismic velocity models through *CRUST2.0* and the *Global Crustal Database* (USGS).

DEM data from *ETOPO1* and *SRTML3*.

Tectonic datasets include a plate boundary model *PeterBird2003* and global strain rate model *GSRM1*.

Geographical data from the *GSHHG* coast-line database and *Geonames.org*, (city names and population)

Travel-Time Calculations

Cake is a very tasty tool for 1D travel-time and ray-path computations. You can use to solve classical seismic ray theory problems for layered-earth

models (layer cake models) on a spherical Earth.

E.g. for various seismic phases Cake calculates:

- Phase arrival times
- Ray paths
- Reflection and transmission coefficients
- Take-off and incidence angles

Figure 1: Seismic rays in layered media - calculated and plotted with Cake.

Forward Modelling

Use **Fomosto** and pyrocko.gf to calculate Green's functions (GF) taylored to your earth model and problem. The GFs are stored and managed in ready-to-use databases. In this way you can seperate the computationally expensive operation from any sorce modelling. Pyrocko wraps different numerical forward-modelling codes, such as *QSEIS*, *QSSP* and *PSGRN/PSCMP* to calculate Green's function databases.

Figure 2: Synthetic waveforms (left) and static LOS displacement (right) calculated through Pyrocko's Green's function database submodule.

The calculation of gridded Green's function databases enables forward-modelling of **arbitrary source geometries**. Currently implemented are (1) explosion source, (2) double couple, (3) moment tensor, (4) rectangular fault plane and (5) ringfault system.

Ecosystem

In Pyrocko's wake the development of seismological software thrives:

- Grond The Earthquake Buster.

 Propabalistic source optimisation from waveform and geodetic data.
- Lassie A friendly Earthquake Detector.
 Even sniffs the finest tremor.
- BEAT Bayesian Earthquake Analysis Tool. Source optimisation from geodetic and seismic data.
- Talpa Interactive Static Source Modelling.
 Analytical and numerical displacement source modeling.
- Automap Beautiful Maps from GMT.

 Swiftly create informational maps through Pyrocko
- Jackseis Waveform archive data manipulation.

 The Seismologist' Swiss Army Knive

Selected References

Heimann, S., Kriegerowski, M., Isken, M., Cesca, S., Daout, S., Grigoli, F., ... Dahm, T. (2017). Pyrocko - An open-source seismology toolbox and library (Version 0.3). GFZ Data Services. https://doi.org/10.5880/gfz.2.1.2017.001

Rongjiang Wang; A simple orthonormalization method for stable and efficient computation of Green's functions. Bulletin of the Seismological Society of America; 89 (3): 733–741.

Bassin, C., Laske, G. and Masters, G., The Current Limits of Resolution for Surface Wave Tomography in North America, EOS Trans AGU, 81, F897, 2000.